CPS 140 - Mathematical Foundations of CS
Dr. Susan Rodger
Section: Properties of Regular Languages (Ch. 4) (handout)

Example

$L=\left\{a^{n} b a^{n} \mid n>0\right\}$

Closure Properties

A set is closed over an operation if
$\mathrm{L}_{1}, \mathrm{~L}_{2} \in$ class
L_{1} op $\mathrm{L}_{2}=\mathrm{L}_{3}$
$\Rightarrow \mathrm{L}_{3} \in$ class

Example

$\mathrm{L}_{1}=\{\mathrm{x} \mid \mathrm{x}$ is a positive even integer $\}$
L is closed under
addition?
multiplication?
subtraction?
division?

Closure of Regular Languages

Theorem 4.1 If L_{1} and L_{2} are regular languages, then

$$
\begin{aligned}
& \mathrm{L}_{1} \cup \mathrm{~L}_{2} \\
& \mathrm{~L}_{1} \cap \mathrm{~L}_{2} \\
& \mathrm{~L}_{1} \mathrm{~L}_{2} \\
& \bar{L}_{1} \\
& \mathrm{~L}_{1}^{*}
\end{aligned}
$$

are regular languages.

Proof(sketch)

L_{1} and L_{2} are regular languages
$\Rightarrow \exists$ reg. expr. r_{1} and r_{2} s.t.
$\mathrm{L}_{1}=\mathrm{L}\left(r_{1}\right)$ and $\mathrm{L}_{2}=\mathrm{L}\left(r_{2}\right)$
$r_{1}+r_{2}$ is r.e. denoting $\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ \Rightarrow closed under union
$r_{1} r_{2}$ is r.e. denoting $\mathrm{L}_{1} \mathrm{~L}_{2}$
\Rightarrow closed under concatenation
r_{1}^{*} is r.e. denoting L_{1}^{*}
\Rightarrow closed under star-closure
complementation:
L_{1} is reg. lang.
$\Rightarrow \exists$ DFA M s.t. $\mathrm{L}_{1}=\mathrm{L}(\mathrm{M})$
Construct M' s.t.
final states in M are nonfinal states in M' nonfinal states in M are final states in M'
\Rightarrow closed under complementation
intersection:
L_{1} and L_{2} are reg. lang.
$\Rightarrow \exists$ DFA M_{1} and M_{2} s.t.
$\mathrm{L}_{1}=\mathrm{L}\left(\mathrm{M}_{1}\right)$ and $\mathrm{L}_{2}=\mathrm{L}\left(\mathrm{M}_{2}\right)$
$\mathrm{M}_{1}=\left(\mathrm{Q}, \Sigma, \delta_{1}, q_{0}, \mathrm{~F}_{1}\right)$
$\mathrm{M}_{2}=\left(\mathrm{P}, \Sigma, \delta_{2}, p_{0}, \mathrm{~F}_{2}\right)$
Construct $\mathrm{M}^{\prime}=\left(\mathrm{Q}^{\prime}, \Sigma, \delta^{\prime},\left(q_{0}, p_{0}\right), \mathrm{F}^{\prime}\right)$ $\mathrm{Q}^{\prime}=(\mathrm{Q} \times \mathrm{P})$
$\delta^{\prime}:$
$\delta^{\prime}\left(\left(q_{i}, p_{j}\right), a\right)=\left(q_{k}, p_{l}\right)$ if
$\mathrm{w} \in \mathrm{L}\left(\mathrm{M}^{\prime}\right) \Longleftrightarrow \mathrm{w} \in \mathrm{L}_{1} \cap \mathrm{~L}_{2}$
\Rightarrow closed under intersection

Example:

Regular languages are closed under

reversal	L^{R}
difference	$\mathrm{L}_{1}-\mathrm{L}_{2}$
right quotient	$\mathrm{L}_{1} / \mathrm{L}_{2}$
homomorphism	$\mathrm{h}(\mathrm{L})$

Right quotient

Def: $\mathrm{L}_{1} / \mathrm{L}_{2}=\left\{x \mid x y \in \mathrm{~L}_{1}\right.$ for some $\left.y \in \mathrm{~L}_{2}\right\}$
Example:

$$
\begin{aligned}
& \mathrm{L}_{1}=\left\{a^{*} b^{*} \cup b^{*} a^{*}\right\} \\
& \mathrm{L}_{2}=\left\{b^{n} \mid n \text { is even, } n>0\right\} \\
& \mathrm{L}_{1} / \mathrm{L}_{2}=
\end{aligned}
$$

Theorem If L_{1} and L_{2} are regular, then L_{1} / L_{2} is regular.
Proof (sketch)
$\exists \mathrm{DFA} \mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, q_{0}, \mathrm{~F}\right)$ s.t. $\mathrm{L}_{1}=\mathrm{L}(\mathrm{M})$.
Construct DFA M' $=\left(\mathrm{Q}, \Sigma, \delta, q_{0}, \mathrm{~F}^{\prime}\right)$

For each state i do
Make i the start state (representing L_{i}^{\prime})
if $\mathrm{L}_{i}^{\prime} \cap \mathrm{L}_{2} \neq \emptyset$ then put q_{i} in F^{\prime} in M^{\prime}

QED.

Homomorphism

Def. Let Σ, Γ be alphabets. A homomorphism is a function

$$
\mathrm{h}: \Sigma \rightarrow \Gamma^{*}
$$

Example:

$$
\left.\begin{array}{l}
\Sigma=\{a, b, c\}, \Gamma=\{0,1\} \\
\\
\\
\\
\\
\\
\\
\\
\\
\mathrm{h}(\mathrm{a}(\mathrm{~b})=11 \\
\mathrm{h}(\mathrm{c})=00
\end{array}\right]
$$

Questions about regular languages :
L is a regular language.

- Given $\mathrm{L}, \Sigma, \mathrm{w} \in \Sigma^{*}$, is $\mathrm{w} \in \mathrm{L}$?
- Is L empty?
- Is L infinite?
- Does $\mathrm{L}_{1}=\mathrm{L}_{2}$?

Ch. 4.3 - Identifying Nonregular Languages

If a language L is finite, is L regular?

If L is infinite, is L regular?

- $L_{1}=\left\{a^{n} b^{m} \mid n>0, m>0\right\}=$
- $L_{2}=\left\{a^{n} b^{n} \mid n>0\right\}$

Prove that $L_{2}=\left\{a^{n} b^{n} \mid n>0\right\}$ is ?

- Proof:

Pumping Lemma: Let L be an infinite regular language. \exists a constant $m>0$ such that any $w \in L$ with $|w| \geq m$ can be decomposed into three parts as $w=x y z$ with

$$
\begin{aligned}
& |x y| \leq m \\
& |y| \geq 1 \\
& x y^{i} z \in L \quad \text { for all } i \geq 0
\end{aligned}
$$

Meaning: Every long string in L (the constant m above corresponds to the finite number of states in M in the previous proof) can be partitioned into three parts such that the middle part can be "pumped" resulting in strings that must be in L.

To Use the Pumping Lemma to prove L is not regular:

- Proof by Contradiction.

Assume L is regular.
$\Rightarrow \mathrm{L}$ satisfies the pumping lemma.
Choose a long string w in $\mathrm{L},|w| \geq m$. (The choice of the string is crucial. Must pick a string that will yield a contradiction).
Show that there is NO division of w into $x y z$ (must consider all possible divisions) such that $|x y| \leq m,|y| \geq 1$ and $x y^{i} z \in \mathrm{~L} \forall i \geq 0$.
The pumping lemma does not hold. Contradiction!
$\Rightarrow \mathrm{L}$ is not regular. QED.

Example L $=\left\{a^{n} c b^{n} \mid n>0\right\}$
L is not regular.

- Proof:

Assume L is regular.
\Rightarrow the pumping lemma holds.
Choose $w=$
where m is the constant in the pumping lemma. (Note that w must be choosen such that $|w| \geq m$.)
The only way to partition w into three parts, $w=x y z$, is such that x contains 0 or more a 's, y contains 1 or more a 's, and z contains 0 or more a 's concatenated with $c b^{m}$. This is because of the restrictions $|x y| \leq m$ and $|y|>0$. So the partition is:

It should be true that $x y^{i} z \in \mathrm{~L}$ for all $i \geq 0$.

Example L $=\left\{a^{n} b^{n+s} c^{s} \mid n, s>0\right\}$
L is not regular.

- Proof:

Assume L is regular.
\Rightarrow the pumping lemma holds.
Choose $w=$
The only way to partition w into three parts, $w=x y z$, is such that x contains 0 or more a 's, y contains 1 or more a 's, and z contains 0 or more a 's concatenated with the rest of the string $b^{m+s} c^{s}$. This is because of the restrictions $|x y| \leq m$ and $|y|>0$. So the partition is:

Example $\Sigma=\{a, b\}, \mathrm{L}=\left\{w \in \Sigma^{*} \mid n_{a}(w)>n_{b}(w)\right\}$
L is not regular.

- Proof:

Assume L is regular.
\Rightarrow the pumping lemma holds.
Choose $w=$

So the partition is:

Example $\mathrm{L}=\left\{a^{3} b^{n} c^{n-3} \mid n>3\right\}$
L is not regular.

- Proof:

Assume L is regular. \Rightarrow the pumping lemma holds.
Choose $w=a^{3} b^{m} c^{m-3}$ where m is the constant in the pumping lemma. There are three ways to partition w into three parts, $w=x y z$. 1) y contains only a 's 2) y contains only b 's and 3$)$ y contains a 's and b 's
We must show that each of these possible partitions lead to a contradiction. (Then, there would be no way to divide w into three parts s.t. the pumping lemma contraints were true).
Case 1: (y contains only a 's). Then x contains 0 to $2 a$'s, y contains 1 to $3 a$'s, and z contains 0 to 2 a 's concatenated with the rest of the string $b^{m} c^{m-3}$, such that there are exactly $3 a$'s. So the partition is:

$$
x=a^{k} \quad y=a^{j} \quad z=a^{3-k-j} b^{m} c^{m-3}
$$

where $k \geq 0, j>0$, and $k+j \leq 3$ for some constants k and j.
It should be true that $x y^{i} z \in \mathrm{~L}$ for all $i \geq 0$.
$x y^{2} z=(x)(y)(y)(z)=\left(a^{k}\right)\left(a^{j}\right)\left(a^{j}\right)\left(a^{3-j-k} b^{m} c^{m-3}\right)=a^{3+j} b^{m} c^{m-3} \notin \mathrm{~L}$ since $j>0$, there are too many a 's. Contradiction!
Case 2: (y contains only b's) Then x contains 3 a's followed by 0 or more b 's, y contains 1 to $m-3$ b 's, and z contains 3 to $m-3 b$'s concatenated with the rest of the string c^{m-3}. So the partition is:

$$
x=a^{3} b^{k} \quad y=b^{j} \quad z=b^{m-k-j} c^{m-3}
$$

where $k \geq 0, j>0$, and $k+j \leq m-3$ for some constants k and j.
It should be true that $x y^{i} z \in \mathrm{~L}$ for all $i \geq 0$.
$x y^{0} z=a^{3} b^{m-j} c^{m-3} \notin \mathrm{~L}$ since $j>0$, there are too few b 's. Contradiction!
Case 3: (y contains a 's and b 's) Then x contains 0 to $2 a$'s, y contains 1 to $3 a$'s, and 1 to $m-3 b$'s, z contains 3 to $m-1 b$'s concatenated with the rest of the string c^{m-3}. So the partition is:

$$
x=a^{3-k} \quad y=a^{k} b^{j} \quad z=b^{m-j} c^{m-3}
$$

where $3 \geq k>0$, and $m-3 \geq j>0$ for some constants k and j.
It should be true that $x y^{i} z \in \mathrm{~L}$ for all $i \geq 0$. $x y^{2} z=a^{3} b^{j} a^{k} b^{m} c^{m-3} \notin \mathrm{~L}$ since $j, k>0$, there are b 's before a 's. Contradiction!
\Rightarrow There is no partition of w.
$\Rightarrow \mathrm{L}$ is not regular!. QED.

To Use Closure Properties to prove L is not regular:
Using closure properties of regular languages, construct a language that should be regular, but for which you have already shown is not regular. Contradiction!

- Proof Outline:

Assume L is regular.
Apply closure properties to L and other regular languages, constructing L ' that you know is not regular.
closure properties $\Rightarrow L^{\prime}$ is regular.
Contradiction!
L is not regular. QED.

Example L $=\left\{a^{3} b^{n} c^{n-3} \mid n>3\right\}$
L is not regular.

- Proof: (proof by contradiction)

Assume L is regular.
Define a homomorphism $h: \Sigma \rightarrow \Sigma^{*}$

$$
\begin{aligned}
& h(a)=a \quad h(b)=a \quad h(c)=b \\
& h(L)=
\end{aligned}
$$

Example $L=\left\{a^{n} b^{m} a^{m} \mid m \geq 0, n \geq 0\right\}$
L is not regular.

- Proof: (proof by contradiction)

Assume L is regular.

Example: $L_{1}=\left\{a^{n} b^{n} a^{n} \mid n>0\right\}$
L_{1} is not regular.

- Proof:

Assume L_{1} is regular.
Goal is to try to construct $\left\{a^{n} b^{n} \mid n>0\right\}$ which we know is not regular.
Let $L_{2}=\left\{a^{*}\right\} . L_{2}$ is regular.
By closure under right quotient, $L_{3}=L_{1} \backslash L_{2}=\left\{a^{n} b^{n} a^{p} \mid 0 \leq p \leq n, n>0\right\}$ is regular.
By closure under intersection, $L_{4}=L_{3} \cap\left\{a^{*} b^{*}\right\}=\left\{a^{n} b^{n} \mid n>0\right\}$ is regular.
Contradiction, already proved L_{4} is not regular!
Thus, L_{1} is not regular. QED.

