Section: Properties of Regular Languages

Example
$L=\left\{a^{n} b a^{n} \mid n>0\right\}$

Closure Properties
A set is closed over an operation if

$$
\begin{aligned}
& \mathbf{L}_{1}, \mathbf{L}_{2} \in \text { class } \\
& \mathbf{L}_{1} \text { op } \mathbf{L}_{2}=\mathbf{L}_{3} \\
& \Rightarrow \mathbf{L}_{3} \in \text { class }
\end{aligned}
$$

$\mathrm{L}_{1}=\{\mathbf{x} \mid \mathbf{x}$ is a positive even integer $\}$
 L is closed under

addition?

multiplication?
subtraction?
division?

Closure of Regular Languages
Theorem 4.1 If L_{1} and L_{2} are regular languages, then
$\mathbf{L}_{1} \cup \mathbf{L}_{2}$
$\mathbf{L}_{1} \cap \mathbf{L}_{2}$
$\mathbf{L}_{1} \mathbf{L}_{2}$
\bar{L}_{1}
\mathbf{L}_{1}^{*}
are regular languages.

Proof(sketch)

L_{1} and L_{2} are regular languages
$\Rightarrow \exists$ reg. expr. r_{1} and r_{2} s.t.
$\mathbf{L}_{1}=\mathbf{L}\left(r_{1}\right)$ and $\mathrm{L}_{2}=\mathbf{L}\left(r_{2}\right)$
$r_{1}+r_{2}$ is r.e. denoting $\mathbf{L}_{1} \cup \mathbf{L}_{2}$
\Rightarrow closed under union
$r_{1} r_{2}$ is r.e. denoting $\mathbf{L}_{1} \mathbf{L}_{2}$
\Rightarrow closed under concatenation
r_{1}^{*} is r.e. denoting \mathbf{L}_{1}^{*}
\Rightarrow closed under star-closure
complementation:
L_{1} is reg. lang.
$\Rightarrow \exists$ DFA M s.t. $\mathrm{L}_{1}=\mathrm{L}(\mathrm{M})$
Construct M' s.t.
final states in M are nonfinal states in M^{\prime} nonfinal states in M are final states in M'
\Rightarrow closed under complementation
intersection:
L_{1} and L_{2} are reg. lang.
$\Rightarrow \exists$ DFA M_{1} and M_{2} s.t.
$\mathrm{L}_{1}=\mathbf{L}\left(\mathrm{M}_{1}\right)$ and $\mathrm{L}_{2}=\mathbf{L}\left(\mathrm{M}_{2}\right)$
$\mathbf{M}_{1}=\left(\mathbf{Q}, \Sigma, \delta_{1}, q_{0}, \mathbf{F}_{1}\right)$
$\mathbf{M}_{2}=\left(\mathbf{P}, \Sigma, \delta_{2}, p_{0}, \mathbf{F}_{2}\right)$
Construct $\mathbf{M}^{\prime}=\left(\mathbf{Q}^{\prime}, \Sigma, \delta^{\prime},\left(q_{0}, p_{0}\right), \mathbf{F}^{\prime}\right)$
$\mathrm{Q}^{\prime}=(\mathrm{Q} \times \mathbf{P})$
$\delta^{\prime}:$

$$
\delta^{\prime}\left(\left(q_{i}, p_{j}\right), a\right)=\left(q_{k}, p_{l}\right) \text { if }
$$

$\mathbf{w} \in \mathbf{L}\left(\mathbf{M}^{\prime}\right) \Longleftrightarrow \mathbf{w} \in \mathbf{L}_{1} \cap \mathbf{L}_{2}$
 \Rightarrow closed under intersection

Example:

Regular languages are closed under reversal $\quad \mathbf{L}^{R}$ difference $\quad \mathrm{L}_{1}-\mathrm{L}_{2}$
 right quotient $\quad L_{1} / L_{2}$ homomorphism $h(L)$

Right quotient

Def: $\mathbf{L}_{1} / \mathbf{L}_{2}=\left\{x \mid x y \in \mathbf{L}_{1}\right.$ for some $\left.y \in \mathbf{L}_{2}\right\}$

Example:

$$
\begin{aligned}
& \mathbf{L}_{1}=\left\{a^{*} b^{*} \cup b^{*} a^{*}\right\} \\
& \mathbf{L}_{2}=\left\{b^{n} \mid n \text { is even, } n>0\right\} \\
& \mathbf{L}_{1} / \mathbf{L}_{2}=
\end{aligned}
$$

Theorem If L_{1} and L_{2} are regular, then L_{1} / L_{2} is regular.

Proof (sketch)
$\exists \mathbf{D F A} \mathbf{M}=\left(\mathbf{Q}, \Sigma, \delta, q_{0}, \mathbf{F}\right)$ s.t. $\mathbf{L}_{1}=$
L(M).
Construct DFA $\mathbf{M}^{\prime}=\left(\mathbf{Q}, \Sigma, \delta, q_{0}, \mathbf{F}^{\prime}\right)$
For each state i do
Make \mathbf{i} the start state (representing \mathbf{L}_{i}^{\prime}) if $\mathbf{L}_{i}^{\prime} \cap \mathbf{L}_{2} \neq \emptyset$ then
put q_{i} in \mathbf{F}^{\prime} in M^{\prime}

QED.

Homomorphism

Def. Let Σ, Γ be alphabets. A homomorphism is a function

$$
\mathbf{h}: \Sigma \rightarrow \Gamma^{*}
$$

Example:

$$
\begin{array}{ll}
\Sigma=\{a, b, c\}, & \Gamma=\{0,1\} \\
& \begin{array}{l}
\mathbf{h}(\mathbf{a})=\mathbf{1 1} \\
\mathbf{h}(\mathbf{b})=\mathbf{0 0} \\
\mathbf{h}(\mathbf{c})=\mathbf{0}
\end{array} \\
\mathbf{h (b \mathbf { b })}= & \\
\mathbf{h (\mathbf { a b } ^ { * }) =} &
\end{array}
$$

Questions about regular languages : L is a regular language.

- Given $\mathbf{L}, \Sigma, \mathbf{w} \in \Sigma^{*}$, is $\mathbf{w} \in \mathbf{L}$?
- Is L empty?
- Is L infinite?
- Does $\mathrm{L}_{1}=\mathrm{L}_{2}$?

Identifying Nonregular Languages

If a language L is finite, is L regular?

If L is infinite, is L regular?

- $L_{1}=\left\{a^{n} b^{m} \mid n>0, m>0\right\}=$
- $L_{2}=\left\{a^{n} b^{n} \mid n>0\right\}$

Prove that $L_{2}=\left\{a^{n} b^{n} \mid n>0\right\}$ is?

- Proof:

Pumping Lemma: Let L be an infinite regular language. \exists a constant $m>0$ such that any $w \in L$ with $|w| \geq m$ can be decomposed into three parts as $w=x y z$ with

$$
\begin{aligned}
& |x y| \leq m \\
& |y| \geq 1 \\
& x y^{i} z \in L \text { for all } i \geq 0
\end{aligned}
$$

To Use the Pumping Lemma to prove L is not regular:

- Proof by Contradiction.

Assume L is regular.
$\Rightarrow \mathrm{L}$ satisfies the pumping lemma.
Choose a long string w in L ,
$|w| \geq m$.
Show that there is NO division of w into $x y z$ (must consider all possible divisions) such that $|x y| \leq m,|y| \geq 1$ and $x y^{i} z \in \mathbf{L} \forall i \geq 0$.
The pumping lemma does not hold. Contradiction!
$\Rightarrow \mathrm{L}$ is not regular. QED.

Example $\mathbf{L}=\left\{a^{n} c b^{n} \mid n>0\right\}$
L is not regular.

- Proof:

Assume L is regular.
\Rightarrow the pumping lemma holds.
Choose $w=$

Example $\mathbf{L}=\left\{a^{n} b^{n+s} c^{s} \mid n, s>0\right\}$
L is not regular.

- Proof:

Assume L is regular.
\Rightarrow the pumping lemma holds.
Choose $w=$
So the partition is:

Example $\Sigma=\{a, b\}$,
$\mathbf{L}=\left\{w \in \Sigma^{*} \mid n_{a}(w)>n_{b}(w)\right\}$

L is not regular.

- Proof:

Assume L is regular.
\Rightarrow the pumping lemma holds.
Choose $w=$
So the partition is:

Example L $=\left\{a^{3} b^{n} c^{n-3} \mid n>3\right\}$
L is not regular.

To Use Closure Properties to prove L is not regular:

- Proof Outline:

Assume L is regular.
Apply closure properties to L and other regular languages, constructing L ' that you know is not regular.
closure properties $\Rightarrow L^{\prime}$ is regular. Contradiction!
L is not regular. QED.

Example L $=\left\{a^{3} b^{n} c^{n-3} \mid n>3\right\}$
L is not regular.

- Proof: (proof by contradiction)

Assume L is regular.
Define a homomorphism $h: \Sigma \rightarrow \Sigma^{*}$
$h(a)=a \quad h(b)=a \quad h(c)=b$
$h(L)=$

Example $\mathbf{L}=\left\{a^{n} b^{m} a^{m} \mid m \geq 0, n \geq 0\right\}$
L is not regular.

- Proof: (proof by contradiction) Assume L is regular.

Example: $L_{1}=\left\{a^{n} b^{n} a^{n} \mid n>0\right\}$
L_{1} is not regular.

