Constraint Satisfaction Problems
(CSPs)

CPS 170

Ron Parr

CSPs

e What is a CSP?
e One view: Search with special goal criteria
e CSP definition (general):

— Variables X,..., X,

— Variable X, has domain D,

— Constraints C,,...,C |

— Solution: Each variable gets a value from its domain
such that no constraints violated

e CSP examples...
— http://www.csplib.org/




Other CSP Examples

e Satisfying curriculum/major requirements
e Sudoku
e Seating arrangements at a party

e LSAT Questions:
http://www.lsac.org/JD/pdfs/SamplePTJune.pdf

A Restricted View

Variables X,,..., X,

A binary constraint, lists permitted assignments to
pairs of variables

A binary constraint between binary variables is a
table of size 4, listing legal assignments for all 4
combinations.

A k-ary constraint lists legal assignments to k
variables at a time.

How large is a k-ary constraint for binary variables?

Note: More expressive languages are often used.




CSP Example

Graph coloring:

Australia Q
(WA)

New South
Whales (NSW)

Tasmania (T)\m Victoria (V)

Problem: Assign Red, Green and Blue so that no 2 adjacent
regions have the same color. (3-coloring)

Example Contd.

e Variables: {WA, NT, Q, SA, NSW, V, T}
e Domains: {R,G,B}

e Constraints:
For WA — NT:{(R,G), (R,B), (G,B), (G,R), (B,R), (B,G)}

e We have a table for each adjacent pair
e Are our constraints binary?
e Can every CSP be viewed as a graph problem?




Constraint Graph
N _of

Y (@)
EW
— \Y
T E?umerate all O

Legal combinations
Of WA and SA @

(ignoring other regions)

CSPs as Search

® ®
O O

Nodes: Partial Assignments Actions: Make Assignments




Backtracking

e Backtracking is the most obvious (and widely used)
method for solving CSPs:
— Search forward by assigning values to variables
— If stuck, undo the most recent assignment and try again
— Repeat until success or all combinations tried

e Embellishments

— Methods for picking next variable to assign
(e.g. most constrained)

— Backjumping

NP-Completeness of CSPs

e Are CSPs in NP?
e Are they NP-hard?

e CSPs and graph coloring are equivalent
e Convert any graph coloring problem to CSP
e Convert any CSP to graph coloring

e Known: Graph coloring is NP-complete

e CSPs are NP-complete

e End of the story or just the beginning?




Issues

e What are good heuristics?

— N.B.: Here we use the term “heuristic” to refer to a procedure
for selecting next variables, not an h(x) function as in A*

— Often good to think of this as a local search

— Focus on choosing actions carefully, instead of pruning nodes
carefully (as in A* or alpha-beta)

e Can we develop heuristics that apply to the entire class
of problems, not just specific instances?

e What'’s the best we can hope for?

Constraint Graphs

e Constraint graphs are important because they capture the
structural relationships between the variables

e IMPORTANT CONCEPT:
Not all instances of a hard problem class are hard

Structural features give insight into hardness

Example: Planar graphs are known to be 4-colorable

Group problems within class by structural features

New measure of problem complexity




Node Consistency

e Check all nodes to verify that set
of possible values is non-empty
‘ : / e How can a set become empty?
@ e Constraint propagation:
@ — After assigning R to WA, we can

remove R from the set of legal
o assignments to SA
— Constraint propagation w/node
consistency checking can discover bad

@ choices quickly

Arc Consistency

Q e Check all arcs for inconsistencies

@ e For each value at the start, there
must exist a consistent value at
the terminus

@ @ * Catches many inconsistencies

e Can use to iteratively reduce
0 number of possible assignments to
each variable

@ (constraint propagation)




K-Consistency

@ @ e k-consistency
— Consider sets of k variables

— For each legal setting of a k-1 subset
@ — Check for legal setting for the kt" variable
@ e Checks for more distant influences
o e 1-consistency = node consistency
e 2 consistency = arc consistency

Is this 3-consistent? (assume we’ve done constraint propagation)

Facts About Arc Consistency

e Strong k-consistency: Consistent for all i<k

e What if a graph with n variables is strongly
n-consistent?

Solution exists!

e What is the worst-case cost of checking n-
consistency? N
0(2")




Linear Constraint Structures

Are these easy or hard?

Suppose our chain is arc consistent...

Properties of Chains

Theorem: Arc consistent linear constraint graphs are strongly
n consistent.

Proof: Induction on n.

Base: Arc consistent chains of length 1 are consistent.

I.H. Arc consistent chains of length i are strongly i consistent

I.S. Extending an i step arc-consistent chain by 1 new arc consistent link
produces an i+1 link strongly i+1 consistent chain.

Proof of I.S.: Since the last link is strongly arc-consistent, any choice for
variable i ensures a consistent choice for 0...i. Newly added node is
consistent. No other variables participate in constraints for i+1.




Properties of Trees

Theorem: Arc consistent constraint trees are strongly n
consistent.

Proof: Same as chain case...

Corollary: Hardness of CSPs with constraint trees

Polynomial!

Cool fact: We now have a graph-based test for separating
out some of the hard problems from the easy ones.

Variable Elimination

Eliminate WA '

@0@ @40

Domain(NT,SA) = {(blue, green), (blue, red),
(green, blue), (green, red), (red, blue), (red, green)}

10



Eliminate Q

@'@ @

oa ORC
> >

Domain(NT,SA,NSW) = {(blue, green, blue), (blue, red, blue),
(red, blue, red), (red, green, red), (green, blue, green),
(green, red, green)}

Simplify

@ Domain(SA, NSW) =

{(blue, green), (blue, red),
(green, blue), (green, red),

@‘@ (red, blue), (red, green)}
(

Domain(NT,SA,NSW) = {(blue, green, blue), (blue, red, blue),
(red, blue, red), (red, green, red), (green, blue, green),
(green, red, green)}

11



Finish
Domain(SA, NSW) =
@ @ {(blue, green), (blue, red),
" (green, blue), (green, red),
O (red, blue), (red, green)}

Can identify all settings of SA, V, NSW for which
there is guaranteed to be a consistent setting of
the remaining variables.

Q: How do we get the settings of the other variables?

Variable Elimination

Var_elim_CSP_solve (vars, constraints)
Q = queue of all variables
i = length(vars)+1
While not(empty(Q))
X'=pop(Q)
Xi = merge(X, neighbors(X))
Simplify Xi (remove variables w/o external connections)
remove_from_Q(Q, neighbors(X))
add_to_Q(Q, Xi)
i=i+1

Note: Merge operation can be tricky to implement, depending
upon constraint language.

12



Variable Elimination Issues

e How expensive is this?

Exponential in size of largest merged variable set.

e |s it sensitive to elimination ordering?

Yes!

Variable Elimination Ordering

ﬁ

Is it better to start at the edges and work in, or at the center
and work out?
Edges!

13



Variable Elimination Facts

You can figure out the cost of a particular elimination
ordering without actually constructing the tables

Finding optimal elimination ordering is NP hard
Good heuristics for finding near optimal orderings
Another structural complexity measure

Investment in finding good ordering can be amortized

CSP Summary

CSPs are a specialized language for describing certain
types of decision problems

We can formulate special heuristics and methods for
problems that can be described in this language

In general, CSPs are NP hard — no general, fast
solutions on the horizon

In some cases, we can use structural measures of
complexity to figure out which ones are really hard

14



