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Limitations of Propositional Logic

e Suppose you want to say: All humans are mortal
For ~6B people, you would need ~6B propositions
Suppose you want to stay that (at least) one
person has perfect pitch

You would need a disjunction of ~6B propositions

There has to be a better way...




First Order Logic

e Propositional logic is very restrictive

— Can’t make global statements about objects in
the world

— Workarounds tends to have very large KBs
e First order logic is more expressive

— Relations, quantification, functions

— but... inference is trickier

First Order Syntax

e Sentences

e Atomic sentence predicate(term)

e Terms — functions, constants, variables
e Connectives

e Quantifiers

e Constants

e Variables




Relations

e Assert relationships between objects

e Examples
— Loves(Harry, Sally)
— Between(Canada, US, Mexico)

e Semantics
— Object and predicate names are mnemonic only
— Interpretation is imposed from outside

— Often we imply the “expected” interpretation of
predicates and objects with suggestive names

Functions

Functions are special cases of relations

Suppose R(xy,X,,...,X,,Y) is such that for every value
of x;,X,,...,X, there is a unique y

Then R(xy,X,,...,X,,) can be used as a shorthand fory
— Crossed(Right_leg_of(Ron), Left_leg_of(Ron))
Remember that the object identified by a function
depends upon the interpretation




Quantification

e For all objects in the world...

Vxhappy(x)

e For at least one object in the world...

dxhappy(x)

Examples

Everybody loves somebody

Vx3dylLoves(x,y)

Everybody loves everybody
VxVyLoves(x,y)

Everybody loves Raymond

VxLoves(x,Raymond)

Raymond loves everybody
VxLoves(Raymond ,x)




Equality

e Equality states that two objects are the same
— Son_of(Barbara) = Ron

e Equality is a special relation that holds whenever
two objects are the same

e We can imagine that every interpretation comes
with its own identity relation

— ldentical(object27, object58)

Inference

e All rules of inference for propositional logic apply
to first order logic

e We need extra rules to handle substitution for
quantified variables

SUBST({x/Harry,y/Sally},Loves(x,y)) = Loves(Harry,Sally)




Inference Rules

e Universal Elimination

Yv:a(v)
SUBST({v/g},a(v))

e How to read this:
— We have a universally quantified variable v in o,
— Can substitute any g for v and o will still be true

Inference Rules

¢ Existential Elimination

dv: a(v)
SUBST({v/k},a(v))

e How to read this:
— We have a universally quantified variable vin o
— Can substitute any k for v and o will still be true

— IMPORTANT: k must be a previously unused
constant (skolem constant). Why is this OK?




Skolemization within Quantifiers

e Skolemizing w/in universal quantifier is tricky

Everybody loves somebody

Vx3y : loves(x,y)
With Skolem constants, becomes:
Vx : loves(x,object34752)

Why is this wrong?

Need to use skolem functions:
Vx : loves(x,personlovedby(x))

Inference Rules

e Existential Introduction

a(g)
SUBST({v/g},dv: a(v))

e How to read this:
— We know that the sentence a is true

— Can substitute variable v for any constant g in o and
(w/existential quantifier) and o will still be true

— Why is this OK?




Generalized Modus Ponens Example
If has_US_birth_certificate(X) then natural_US_citizen(X)
has_US_birth_certificate(Obama)
Conclude SUBST({Obama/X},natural_US_citizen(X))

i.e., natural_US_citizen(Obama)

Generalized Modus Ponens

SUBST(0,p,") = SUBST(0,p,)Vi

p1'9p2'7°"pn"(p1 A p2 A...A pn d q)
SUBST(6,9)

e How to read this:
— We have an implication which implies g

— Any consistent substitution of variables on the
LHS must yield a valid conclusion on the RHS




Unification

e Substitution is a non-trivial matter
e We need an algorithm unify:

Unify(p,q) = 0 : Subst(8,p) = Subst(0,q)

e Important: Unification replaces variables:
dxLoves(John,x)
dxHates(John,x)

e Are these the same x?

Unification Example

Y xKnows(John,x) = Loves(John,x)
Knows(John,Jane)
YyKnows(y,Leonid)
YyKnows(y,Mother(y))
VxKnows(x Elizabeth)

Note: All unquantified variables are assumed universal from here on.

Unify(Knows(John,x),Knows(John,Jane)) =  {x/Jane}
Unify(Knows(John,x),Knows(y,Leonid)) = {x/Leonid.y / John}
Unify(Knows(John,x),Knows(y,Mother(y))) = {y/John.x/Mother(John)}
Unify(Knows(John,x),Knows(x,Elizabeth)) =  {x, /Elizabeth,x, / John}




Most General Unifier

e Unify(Knows(John,x),Knows(y,z))
— {y/lohn,x/z}
— {y/Jlohn,x/z,w/Freda}
— {y/John,x/John,z/John)
e When in doubt, we should always return
the most general unifier (MGU)

— MGU makes least commitment about binding
variables to constants

Proof Procedures

Suppose we have a knowledge base: KB
We want to prove q

Forward Chaining

— Like search: Keep proving new things and adding them
to the KB until we are able to prove g

Backward Chaining
— Find p;...p, s.t. knowing p,...p, would prove q
— Recursively try to prove p,...p,
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Forward Chaining Example

VxKnows(John,x) = Loves(John,x)
Knows(John,Jane)
YyKnows(y,Leonid)
YyKnows(y,Mother(y))
VxKnows(x,Elizabeth)

e Loves(John, Jane)

e Knows(John, Leonid)

e Loves(John, Leonid)

¢ Knows(John,Mother(John))
e Loves(John,Mother(John))
¢ Knows(John, Elizabeth)

e Loves(John, Elizabeth)

Forward Chaining

Procedure Forward_Chain(KB,p)

If pisin KB then return

Add p to KB

For each (p, * ... * p,=>q) in KB such that for some i,

Unify(p, p)=q succeeds do
Find_And_Infer(KB,[py,...,Pi.1,Pis1,--/Pn),9,9)

end

Procedure Find_and_Infer(KB,premises,conclusion,q)

If premises=[] then
Forward_Chain(KB,Subst(qg,conclusion))

Else for each p’ in KB such that

Unify(p’ ,Subst(q,Head(premises)))=q, do

Find_And_Infer(KB,Tail(premises),conclusion,[q,q,]))

end
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A Note About Forward Chaining

As presented, forward chaining seems undirected
Can view forward chaining as a search problem
Can apply heuristics to guide this search
If you’ re trying to prove that Barack Obama is a natural born
citizen, should you should start by proving that square127 is also a
rectangle???
Interesting Al history: AM/Eurisko controversy
— Doug Lenat introduced what was essentially a forward chaining system for
coming up with interesting math concepts
— Claimed to (re)discover many interesting concepts using only some simple
heuristics
— Methodology sharply criticized due to opacity (see Ritchie and Hanna 1984
and response from Lenat and Brown 1984)

Backward Chaining Example

Y xKnows(John,x) = Loves(John,x)
Knows(John,Jane)
YyKnows(y,Leonid)
YyKnows(y,Mother(y))
VxKnows(x,Elizabeth)

e Goal: Loves(John, Jane)?
e Subgoal: Knows(John,Jane)
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Backward Chaining

Function Back_Chain(KB,q)
Back_Chain_List(KB,[q],{})

Function Back_Chain_List(KB,qlist,q)
If glist=[] then return q
g<-head(qlist)
For each g, in KB such that g,<-Unify(q,q," ) succeeds do
Answers <- Answers + [q,q;]
For each (p,*...Ap,=>q;" )in KB: q;<-Unify(q,q;” ) succeeds do
Answers<- Answers+
Back_Chain_List(KB,Subst(q,[p;...p,]).[a,a]))
return union of Back_Chain_List(KB,Tail(qglist),q) for each q in answers

Completeness

VX:P(X)=Q(X)
VX:=P(X)=>R(X)
VX:Q(X)= S(X)
VX :R(X)= S(X)
S(a)???

e Problem: Generalized Modus Ponens not complete
e Forward/Backward chaining rely upon generalized MP

e Goal: A sound and complete inference procedure for first
order logic




Generalized Resolution

0 =Unify(p;,~q,)
Py V...p;...vp, )G V...q...Vq,)

SUBST(0,(p, V.- s VPjy VP VA VG g V iy -V G,)

e |f the same term appears in both positive
and negative form in two disjunctions, they
cancel out when disjunctions are combined

Generalized Resolution Example

(=P(x) v Q(x))
(P(X) v R(x))
(=Q(x) v 5(x))
(=R(X) v 5(x))
S(A)MM

Example on board...
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Resolution Properties

Proof by refutation (asserting negation and resolving to nil) is
sound and complete

(NB: We did not do this in the previous example)
Resolution is not complete in a generative sense, only in a
testing sense
This is only part of the job
To use resolution, we must convert everything to a canonical
form, i.e., all sentences must be disjunctions with only
implicit universal quantification and existential quantification
replaced with skolemization

Canonical Form

e Eliminate Implications

e Move negation inwards

e Standardize (apart) variables

e Move quantifiers Left

e Skolemize

e Drop universal quantifiers

e Distribute AND over OR

e Flatten nested conjunctions and disjunctions
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Computational Properties

¢ We can enumerate the set of all proofs
e We can check if a proof is valid
e First order logic is complete (Godel)

e What if no valid proof exists?
¢ Inference in first order logic is semi-decidable
e Compare with halting problem (halting problem is semi-decidable)

e As with propositional logic, horn clauses are an important special case. More
about this when we discuss prolog in a future lecture.

Godel’ s Incompleteness Result

e Godel’s incompleteness result is, perhaps, better known
¢ Incompleteness applies to logical/mathematical systems
rich enough to contain numbers and math
— Need a way of enumerating all valid proofs within the system
— Need a way of referring to proofs by number
e Construct a Godel sentence:
— S: Foralli, iis not the number of a proof of the sentence j
— (Equivalent to saying, there does not exist a proof of sentence j)

— Suppose sentence S is sentence j
¢ |f Sis false, then we have a contradiction
e If Sis true, then we can’t have a proof of it
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Diagonalization

e Incompleteness can be seen as an instance of
diagonalization:

— Define a set
(Rationals, TMs that halt, theorems that are provable)

— Use rules of the system to create an impossible object

e Example: Proof that reals are not enumerable
(i.e., not countable and therefore larger than the
rationals)

Countability of Rationals

g x2°+n x2"+n, x2" ...
T d, x2°+d, x2 +d, x 22 ...

Label n, dy n, d,
0 0 0 0 0
1 1 0 0 0
2 0 1 0 0
3 1 1 0 0
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Uncountability of Reals

e Given:
Label n, d, n, d,
0 0 0 0 0
1 1 0 0 0
2 0 1 0 0
3 1 1 0 0

Label n, d, n, d,
1 1 0 0 0
1 1 1 0 0
2 0 1 1 0
3 1 1 0 1

Implications of all this

e Sophomoric interpretation: Al is impossible/implausible because
there will always be true things that cannot be discovered by logic

e A bit of reality:

— Incompleteness talks about a system’s ability to prove things about itself

— For any given system, it may be possible to prove things by talking about
the system in a more expressive language

— Relationship of the unprovable to intelligence is murky at best: Are the
things you can'’t justify the things that make you intelligent?

— Not clear that anything interesting is unprovable in a practical sense
(though plenty of interesting things remain unproven)
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First Order Logic Conclusions

First order logic adds relations and quantification to
predicate logic

Inference in first order logic is, essentially, a generalization
of inference in predicate logic
— Resolution is sound and complete

— Use of resolution requires:
e Conversion to canonical form
* Proof by refutation

In general, inference is first order logic is semi-decidable
FOL + basic math is no longer complete
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