First Order Logic
(Predicate Calculus)

CPS 170
Ronald Parr

Limitations of Propositional Logic

e Suppose you want to say: All humans are mortal
For ~6B people, you would need ~6B propositions
Suppose you want to stay that (at least) one
person has perfect pitch

You would need a disjunction of ~6B propositions

There has to be a better way...




First Order Logic

e Propositional logic is very restrictive

— Can’t make global statements about objects in
the world

— Workarounds tends to have very large KBs
e First order logic is more expressive

— Relations, quantification, functions

— but... inference is trickier

First Order Syntax

e Sentences

e Atomic sentence predicate(term)

e Terms — functions, constants, variables
e Connectives

e Quantifiers

e Constants

e Variables




Relations

e Assert relationships between objects

e Examples
— Loves(Harry, Sally)
— Between(Canada, US, Mexico)

e Semantics
— Object and predicate names are mnemonic only
— Interpretation is imposed from outside

— Often we imply the “expected” interpretation of
predicates and objects with suggestive names

Functions

Functions are special cases of relations

Suppose R(xy,X,,...,X,,Y) is such that for every value
of x;,X,,...,X, there is a unique y

Then R(xy,X,,...,X,,) can be used as a shorthand fory
— Crossed(Right_leg_of(Ron), Left_leg_of(Ron))
Remember that the object identified by a function
depends upon the interpretation




Quantification

e For all objects in the world...

Vxhappy(x)

e For at least one object in the world...

dxhappy(x)

Examples

Everybody loves somebody

Vx3dylLoves(x,y)

Everybody loves everybody
VxVyLoves(x,y)

Everybody loves Raymond

VxLoves(x,Raymond)

Raymond loves everybody
VxLoves(Raymond ,x)




Equality

e Equality states that two objects are the same
— Son_of(Barbara) = Ron

e Equality is a special relation that holds whenever
two objects are the same

e We can imagine that every interpretation comes
with its own identity relation

— ldentical(object27, object58)

Inference

e All rules of inference for propositional logic apply
to first order logic

e We need extra rules to handle substitution for
quantified variables

SUBST({x/Harry,y/Sally},Loves(x,y)) = Loves(Harry,Sally)




Inference Rules

e Universal Elimination

Yv:a(v)
SUBST({v/g},a(v))

e How to read this:
— We have a universally quantified variable v in o,
— Can substitute any g for v and o will still be true

Inference Rules

¢ Existential Elimination

dv: a(v)
SUBST({v/k},a(v))

e How to read this:
— We have a universally quantified variable vin o
— Can substitute any k for v and o will still be true

— IMPORTANT: k must be a previously unused
constant (skolem constant). Why is this OK?




Skolemization within Quantifiers

e Skolemizing w/in universal quantifier is tricky

Everybody loves somebody

Vx3y : loves(x,y)
With Skolem constants, becomes:
Vx : loves(x,object34752)

Why is this wrong?

Need to use skolem functions:
Vx : loves(x,personlovedby(x))

Inference Rules

e Existential Introduction

a(g)
SUBST({v/g},dv: a(v))

e How to read this:
— We know that the sentence a is true

— Can substitute variable v for any constant g in o and
(w/existential quantifier) and o will still be true

— Why is this OK?




Generalized Modus Ponens Example
If has_US_birth_certificate(X) then natural_US_citizen(X)
has_US_birth_certificate(Obama)
Conclude SUBST({Obama/X},natural_US_citizen(X))

i.e., natural_US_citizen(Obama)

Generalized Modus Ponens

SUBST(0,p,") = SUBST(0,p,)Vi

p1'9p2'7°"pn"(p1 A p2 A...A pn d q)
SUBST(6,9)

e How to read this:
— We have an implication which implies g

— Any consistent substitution of variables on the
LHS must yield a valid conclusion on the RHS




Unification

e Substitution is a non-trivial matter
e We need an algorithm unify:

Unify(p,q) = 0 : Subst(8,p) = Subst(0,q)

e Important: Unification replaces variables:
dxLoves(John,x)
dxHates(John,x)

e Are these the same x?

Unification Example

Y xKnows(John,x) = Loves(John,x)
Knows(John,Jane)
YyKnows(y,Leonid)
YyKnows(y,Mother(y))
VxKnows(x Elizabeth)

Note: All unquantified variables are assumed universal from here on.

Unify(Knows(John,x),Knows(John,Jane)) =  {x/Jane}
Unify(Knows(John,x),Knows(y,Leonid)) = {x/Leonid.y / John}
Unify(Knows(John,x),Knows(y,Mother(y))) = {y/John.x/Mother(John)}
Unify(Knows(John,x),Knows(x,Elizabeth)) =  {x, /Elizabeth,x, / John}




Most General Unifier

e Unify(Knows(John,x),Knows(y,z))
— {y/lohn,x/z}
— {y/Jlohn,x/z,w/Freda}
— {y/John,x/John,z/John)
e When in doubt, we should always return
the most general unifier (MGU)

— MGU makes least commitment about binding
variables to constants

Proof Procedures

Suppose we have a knowledge base: KB
We want to prove q

Forward Chaining

— Like search: Keep proving new things and adding them
to the KB until we are able to prove g

Backward Chaining
— Find p;...p, s.t. knowing p,...p, would prove q
— Recursively try to prove p,...p,

10



Forward Chaining Example

VxKnows(John,x) = Loves(John,x)
Knows(John,Jane)
YyKnows(y,Leonid)
YyKnows(y,Mother(y))
VxKnows(x,Elizabeth)

e Loves(John, Jane)

e Knows(John, Leonid)

e Loves(John, Leonid)

¢ Knows(John,Mother(John))
e Loves(John,Mother(John))
¢ Knows(John, Elizabeth)

e Loves(John, Elizabeth)

Forward Chaining

Procedure Forward_Chain(KB,p)

If pisin KB then return

Add p to KB

For each (p, * ... * p,=>q) in KB such that for some i,

Unify(p, p)=q succeeds do
Find_And_Infer(KB,[py,...,Pi.1,Pis1,--/Pn),9,9)

end

Procedure Find_and_Infer(KB,premises,conclusion,q)

If premises=[] then
Forward_Chain(KB,Subst(qg,conclusion))

Else for each p’ in KB such that

Unify(p’ ,Subst(q,Head(premises)))=q, do

Find_And_Infer(KB,Tail(premises),conclusion,[q,q,]))

end

11



A Note About Forward Chaining

As presented, forward chaining seems undirected
Can view forward chaining as a search problem
Can apply heuristics to guide this search
If you’ re trying to prove that Barack Obama is a natural born
citizen, should you should start by proving that square127 is also a
rectangle???
Interesting Al history: AM/Eurisko controversy
— Doug Lenat introduced what was essentially a forward chaining system for
coming up with interesting math concepts
— Claimed to (re)discover many interesting concepts using only some simple
heuristics
— Methodology sharply criticized due to opacity (see Ritchie and Hanna 1984
and response from Lenat and Brown 1984)

Backward Chaining Example

Y xKnows(John,x) = Loves(John,x)
Knows(John,Jane)
YyKnows(y,Leonid)
YyKnows(y,Mother(y))
VxKnows(x,Elizabeth)

e Goal: Loves(John, Jane)?
e Subgoal: Knows(John,Jane)

12



Backward Chaining

Function Back_Chain(KB,q)
Back_Chain_List(KB,[q],{})

Function Back_Chain_List(KB,qlist,q)
If glist=[] then return q
g<-head(qlist)
For each g, in KB such that g,<-Unify(q,q," ) succeeds do
Answers <- Answers + [q,q;]
For each (p,*...Ap,=>q;" )in KB: q;<-Unify(q,q;” ) succeeds do
Answers<- Answers+
Back_Chain_List(KB,Subst(q,[p;...p,]).[a,a]))
return union of Back_Chain_List(KB,Tail(qglist),q) for each q in answers

Completeness

VX:P(X)=Q(X)
VX:=P(X)=>R(X)
VX:Q(X)= S(X)
VX :R(X)= S(X)
S(a)???

e Problem: Generalized Modus Ponens not complete
e Forward/Backward chaining rely upon generalized MP

e Goal: A sound and complete inference procedure for first
order logic




Generalized Resolution

0 =Unify(p;,~q,)
Py V...p;...vp, )G V...q...Vq,)

SUBST(0,(p, V.- s VPjy VP VA VG g V iy -V G,)

e |f the same term appears in both positive
and negative form in two disjunctions, they
cancel out when disjunctions are combined

Generalized Resolution Example

(=P(x) v Q(x))
(P(X) v R(x))
(=Q(x) v 5(x))
(=R(X) v 5(x))
S(A)MM

Example on board...

14



Resolution Properties

Proof by refutation (asserting negation and resolving to nil) is
sound and complete

(NB: We did not do this in the previous example)
Resolution is not complete in a generative sense, only in a
testing sense
This is only part of the job
To use resolution, we must convert everything to a canonical
form, i.e., all sentences must be disjunctions with only
implicit universal quantification and existential quantification
replaced with skolemization

Canonical Form

e Eliminate Implications

e Move negation inwards

e Standardize (apart) variables

e Move quantifiers Left

e Skolemize

e Drop universal quantifiers

e Distribute AND over OR

e Flatten nested conjunctions and disjunctions

15



Computational Properties

¢ We can enumerate the set of all proofs
e We can check if a proof is valid
e First order logic is complete (Godel)

e What if no valid proof exists?
¢ Inference in first order logic is semi-decidable
e Compare with halting problem (halting problem is semi-decidable)

e As with propositional logic, horn clauses are an important special case. More
about this when we discuss prolog in a future lecture.

Godel’ s Incompleteness Result

e Godel’s incompleteness result is, perhaps, better known
¢ Incompleteness applies to logical/mathematical systems
rich enough to contain numbers and math
— Need a way of enumerating all valid proofs within the system
— Need a way of referring to proofs by number
e Construct a Godel sentence:
— S: Foralli, iis not the number of a proof of the sentence j
— (Equivalent to saying, there does not exist a proof of sentence j)

— Suppose sentence S is sentence j
¢ |f Sis false, then we have a contradiction
e If Sis true, then we can’t have a proof of it

16



Diagonalization

e Incompleteness can be seen as an instance of
diagonalization:

— Define a set
(Rationals, TMs that halt, theorems that are provable)

— Use rules of the system to create an impossible object

e Example: Proof that reals are not enumerable
(i.e., not countable and therefore larger than the
rationals)

Countability of Rationals

g x2°+n x2"+n, x2" ...
T d, x2°+d, x2 +d, x 22 ...

Label n, dy n, d,
0 0 0 0 0
1 1 0 0 0
2 0 1 0 0
3 1 1 0 0

17



Uncountability of Reals

e Given:
Label n, d, n, d,
0 0 0 0 0
1 1 0 0 0
2 0 1 0 0
3 1 1 0 0

Label n, d, n, d,
1 1 0 0 0
1 1 1 0 0
2 0 1 1 0
3 1 1 0 1

Implications of all this

e Sophomoric interpretation: Al is impossible/implausible because
there will always be true things that cannot be discovered by logic

e A bit of reality:

— Incompleteness talks about a system’s ability to prove things about itself

— For any given system, it may be possible to prove things by talking about
the system in a more expressive language

— Relationship of the unprovable to intelligence is murky at best: Are the
things you can'’t justify the things that make you intelligent?

— Not clear that anything interesting is unprovable in a practical sense
(though plenty of interesting things remain unproven)

18



First Order Logic Conclusions

First order logic adds relations and quantification to
predicate logic

Inference in first order logic is, essentially, a generalization
of inference in predicate logic
— Resolution is sound and complete

— Use of resolution requires:
e Conversion to canonical form
* Proof by refutation

In general, inference is first order logic is semi-decidable
FOL + basic math is no longer complete

19



