Intro to Game Theory

CPS 170
Ron Parr
(with many slides courtesy of Vince Conitzer)

What is game theory?

- Study of settings where multiple parties (agents) each have
 - different preferences (utility functions),
 - different actions
- Each agent's utility (potentially) depends on all agents' actions
 - What is optimal for one agent depends on what other agents do
 - Can be circular
- Game theory studies how agents can rationally form beliefs over what other agents will do, and (hence) how agents should act
- Can be useful for acting as well as (potentially) predicting behavior of others
- · Not necessarily descriptive

Real World Game Theory Examples

- War
- Auctions
- Animal behavior
- Networking protocols, peer to peer networking behavior
- Road traffic
- Mechanism design: Suppose we want people to do X? How do we engineer the situation so that they will act that way?

"Chicken"

- Two players drive cars towards each other
- If one player goes straight, that player wins
- If both go straight, they both die

Dominance

- Player i's strategy s_i strictly dominates s_i' if
 - for any s_{-i} , $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$
- s_i weakly dominates s_i' if

-i = "the player(s) other than i"

- for any s_{-i} , $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$; and
- for some s_{-i} , $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$

Prisoner's Dilemma

- Pair of criminals has been caught
- District attorney has evidence to convict them of a minor crime (1 year in jail); knows that they committed a major crime together (3 years in jail) but cannot prove it
- Offers them a deal:
 - If both confess to the major crime, they each get a 1 year reduction
 - If only one confesses, that one gets 3 years reduction

"2/3 of the average" game

- Everyone writes down a number between 0 and 100
- Person closest to 2/3 of the average wins
- Example:
 - A says 50
 - B says 10
 - C says 90
 - Average(50, 10, 90) = 50
 - 2/3 of average = 33.33
 - A is closest (|50-33.33| = 16.67), so A wins

Iterated dominance

- Iterated dominance: remove (strictly/weakly) dominated strategy, repeat
- Iterated strict dominance on Seinfeld's RPS:

Mixed strategies

- Mixed strategy for player i = probability distribution over player i's (pure) strategies
- E.g. 1/3 _____ 1/3 ____, 1/3 ____
- Example of dominance by a mixed strategy:

Nash equilibrium [Nash 50]

- A vector of strategies (one for each player) = a strategy profile
- Strategy profile $(\sigma_1, \sigma_2, ..., \sigma_n)$ is a Nash equilibrium if each σ_i is a best response to σ_{-i}
 - That is, for any i, for any σ_i' , $u_i(\sigma_i, \sigma_{-i}) \ge u_i(\sigma_i', \sigma_{-i})$
- Does not say anything about multiple agents changing their strategies at the same time
- In any (finite) game, at least one Nash equilibrium (possibly using mixed strategies) exists [Nash 50]
- (Note singular: equilibrium, plural: equilibria)

- (D, S) and (S, D) are Nash equilibria
 - They are pure-strategy Nash equilibria: nobody randomizes
 - They are also strict Nash equilibria: changing your strategy will make you strictly worse off
- No other pure-strategy Nash equilibria

Rock-paper-scissors

- Any pure-strategy Nash equilibria?
- But it has a mixed-strategy Nash equilibrium:
 Both players put probability 1/3 on each action

Nash equilibria of "chicken"...

- Is there a Nash equilibrium that uses mixed strategies -- say, where player 1 uses a mixed strategy?
- If a mixed strategy is a best response, then all of the pure strategies that it randomizes over must also be best responses
- So we need to make player 1 indifferent between D and S

Di Al III C. I. D. C.

Player 1's utility for playing D = -p^c_S

-p^c_s = probability that column player plays s

- Player 1's utility for playing $S = p_D^c 5p_S^c = 1 6p_S^c$
- So we need $-p_S^c = 1 6p_S^c$ which means $p_S^c = 1/5$
- Then, player 2 needs to be indifferent as well
- Mixed-strategy Nash equilibrium: ((4/5 D, 1/5 S), (4/5 D, 1/5 S))
 - People may die! Expected utility -1/5 for each player

Computational Issues

- Zero-sum games can be solved efficiently as linear programs (see slides from earlier in the semester)
- General sum games may require exponential time (in # of actions) to find a single equilibrium (no known efficient algorithm and good reasons to suspect that none exists)
- Some better news: Despite bad worst-case complexity, many games can be solved quickly

Game Theory Issues

- How descriptive is game theory?
 - Some evidence that people play equilibria
 - Also, some evidence that people act irrationally
 - If it is computationally intractable to solve for equilibria of large games, seems unlikely that people are doing this
- How reasonable is game theory?
 - Are payoffs known?
 - Are situations really simultaneous move with no information about how the other player will act?
 - Are situations really single-shot

Extensions

- Partial information
- Uncertainty about the game parameters, e.g., payoffs (Bayesian games)
- Multistep games with distributions over next states (game theory + MDPs = stochastic games)
- Multistep + partial information (Partially observable stochastic games)
- Game theory is so general, that it can encompass essentially all aspects of strategic, multiagent behavior, e.g., negotiating, threats, bluffs, coalitions, bribes, etc.