HMMs

CPS 170 Ronald Parr

Overview

- Bayes nets are (mostly) atemporal
- Need a way to talk about a world that changes over time
- Necessary for planning
- Many important applications
 - Target tracking
 - Patient/factory monitoring
 - Speech recognition

Back to Atomic Events

- We began talking about probabilities from the perspective of atomic events
- An atomic event is an assignment to every random variable in the domain
- For n random variables, there are 2ⁿ possible atomic events
- State variables return later (briefly)

States

- When reasoning about time, we often call atomic events states
- States, like atomic events, form a mutually exclusive and jointly exhaustive partition of the space of possible events
- We can describe how a system behaves with a state-transition diagram

State Transition Diagram

P(S2|S1)=0.75 P(S1|S1)=0.25 P(S2|S2)=0.50

P(S1|S2)=0.50

Don't confuse states with state variables!

Don't confuse states with state variables!

Don't confuse states with state variables!

Example: Speech Recognition

- Speech is broken down into atoms called phonemes, e.g., see arpanet: http://en.wikipedia.org/wiki/Arpabet
- Phonemes are pulled from the audio stream using a variety of techniques
- Words are stochastic finite automata (HMMs) with outputs that are phonemes

You say tomato, I say...

Real variations in speech between speakers can be much more subtle and complicated than this: How do we learn these?

State Transition Diagrams

- Make a lot of assumptions
 - Transition probabilities don't change over time (stationarity)
 - The event space does not change over time
 - Probability distribution over next states depends only on the current state (Markov assumption)
 - Time moves in uniform, discrete increments

The Markov Assumption

- Let S_t be a random variable for the state at time t
- $P(S_t | S_{t-1},...,S_0) = P(S_t | S_{t-1})$
- (Use subscripts for time; S0 is different from S₀)
- Markov is special kind of conditional independence
- Future is independent of past given current state

Markov Models

- A system with states that obey the Markov assumption is called a *Markov Model*
- A sequence of states resulting from such a model is called a *Markov Chain*
- The mathematical properties of Markov chains are studied heavily in mathematics, statistics, computer science, electrical engineering, etc.

What's The Big Deal?

- A system that obeys the Markov property can be described succinctly with a transition matrix, where the i,jth entry of the matrix is P(S_i|S_i)
- The Markov property ensures that we can maintain this succinct description over a potentially infinite time sequence
- Properties of the system can be analyzed in terms of properties of the transition matrix
 - Steady-state probabilities
 - Convergence rate, etc.

Observations

- Introduce E_t for the observation at time t
- Observations are like evidence
- Define the probability distribution over observations as function of current state: P(E|S)
- Assume observations are conditionally independent of other variables given current state
- Assume observation probabilities are stationary

A Bayes Net View of HMMs

Note: These are random variables, not states!

Applications

- Monitoring/Filtering: P(S_t:E₀...E_t)
 - S is the current status of the patient/factory
 - E is the current measurement
- Prediction: P(S_t:E₀...E_k), t>k
 - S is the current/future position of an object
 - E are our past observations
 - Project S into the future

Applications

- Smoothing/hindsight: P(S_k:E₀...E_t), t>k
 - Update view of the past based upon future
 - Diagnosis: Factory exploded at time t=20, what happened at t=5 to cause this?
- Most likely explanation
 - What is the most likely sequence of events (from start to finish) to explain what we have seen?
 - NB: Answer is a single path, not a distribution

Example: Robot Self Tracking

- Consider Roomba-like robot with:
 - Known map of the room
 - 4-way proximity sensors
 - Unknown initial position (kidnapped robot problem)
- We consider a discretized version of this problem
 - Map discretized into grid
 - Discrete, one-square movements

(Images from iRobot's web page)

Simple Map, Kidnapped Robot

Robot Senses

Obstacles up and down, none left and right

Robot Updates Distribution

Robot Moves Right, Updates

Robot Updates Probabilities

Obstacles up and down, none left and right

What Just Happened

- This was an example of robot tracking
- We can also do:
 - Prediction (where would the robot be?)
 - Smoothing (where was the robot?)
 - Most likely path (what path did the robot take?)

Prediction

Suppose the Robot Moves Right Twice

New Robot Position Distribution

Are these probabilities uniform?

What Isn't Realistic Here?

- Where does the map come from?
- Does the robot really have these sensors?
- Are right/left/up/down the correct sort of actions? (Even if the robot has a map, it may not know its orientation.)
- Are robot actions deterministic?
- Are sensing actions deterministic?
- Would a probabilistic sensor model conflate sensor noise and incorrect modeling?
- Can the world be modeled as a grid?
- Good news: Despite these problems, robotic mapping and localization (tracking) can actually be made to work!

Monitoring/Prediction

We want:
$$P(S_t | e_t ... e_0) = \sum_{S_0 ... S_{t-1}} P(S_0 ... S_t | e_t ... e_0)$$

By variable elimination:

Smoothing/Hindsight

We want:
$$P(S_k | e_t ... e_0) = \sum_{S_0 ... S_{k-1}, S_{k+1} ... S_t} P(S_0 ... S_t | e_t ... e_0)$$

By variable elimination:

Most Likely (Viterbi) Path

From definition of Bayes net (or HMM):

$$P(S_0...S_t | e_0...e_t) \propto P(S_0)P(e_0 | S_0) \prod_{i=1}^t P(S_i | S_{i-1})P(e_i | S_i)$$

Suppose we want max probability sequence of states:

$$\begin{aligned} \max_{S_0 = S_t} P(S_0 ... S_t \mid e_0 ... e_t) &= \max_{S_0 = S_t} P(S_0) P(e_0 \mid S_0) \prod_{i=1}^t P(S_i \mid S_{i-1}) P(e_i \mid S_i) \\ &= \max_{S_1 = S_t} \prod_{i=1}^t P(S_i \mid S_{i-1}) P(e_i \mid S_i) \max_{S_0} P(S_1 \mid S_0) P(S_0) P(e_0 \mid S_0) \\ &= \max_{S_2 = S_t} \prod_{i=2}^t P(S_i \mid S_{i-1}) P(e_i \mid S_i) \max_{S_1} P(S_2 \mid S_1) P(S_1 \mid e_1) \max_{S_0} P(S_1 \mid S_0) P(S_0) P(e_0 \mid S_0) \end{aligned}$$

Keep distributing max over product!

Compare with Dijkstra's algorithm, dynamic programming.

Algebraic View: Our Main Tool

$$P(A \land B) = P(B \land A)$$

$$P(A \mid B)P(B) = P(B \mid A)P(A)$$

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Conditional Probability with Extra Evidence

- Recall: P(AB)=P(A|B)P(B)
- Add extra evidence C
 (can be a set of variables)
- P(AB|C)=P(A|BC)P(B|C)

Extending Bayes Rule

$$P(A \mid BC) = \frac{P(B \mid AC)P(A \mid C)}{P(B \mid C)}$$

How to think about this: The C is like "extra" evidence. This forces us into one corner of the event space. Given that we are in this corner, everything behaves the same.

Using Conditional Independence And the Markov Property

- Suppose A and B are conditionally independent given C
- P(AB|C)=P(A|C)P(B|C)
- $P(S_tS_{t-1}|e_{t-1}e_0)=P(S_t|S_{t-1}e_{t-1}e_0) P(S_{t-1}|e_{t-1}e_0) = P(S_t|S_{t-1}) P(S_{t-1}|e_{t-1}e_0)$

Monitoring

We want: $P(S_t | e_t...e_0)$

$$P(S_{t} | e_{t} ... e_{0}) = \frac{P(e_{t} | S_{t}, e_{t-1} ... e_{0}) P(S_{t} | e_{t-1} ... e_{0})}{P(e_{t} | e_{t-1} ... e_{0})}$$

$$= \alpha P(e_{t} | S_{t} e_{t-1} ... e_{0}) P(S_{t} | e_{t-1} ... e_{0})$$

$$= \alpha P(e_{t} | S_{t}) P(S_{t} | e_{t-1} ... e_{0})$$

$$= \alpha P(e_{t} | S_{t}) \sum_{S_{t-1}} P(S_{t} | S_{t-1}) P(S_{t-1} | e_{t-1} ... e_{0})$$
Recursive

Example

- W = student is working
- R = student has produced results
- adviser observed whether student has produced results
- Must infer whether student is working given observations

$$P(W_{t+1} \mid W_t) = 0.8$$

$$P(W_{t+1} \mid \overline{W_t}) = 0.3$$

$$P(R \mid W) = 0.6$$

$$P(R \mid \overline{W}) = 0.2$$

Problem

Assume student starts school in a productive (working) state. Adviser has observed two consecutive months without results. What is probability that student was working in the second month?

Let's Do The Math

$$P(W_{t+1} | W_t) = 0.8$$

$$P(W_{t+1} | \overline{W_t}) = 0.3$$

$$P(R \mid W) = 0.6$$

$$P(R \mid \overline{W}) = 0.2$$

$$P(W_2 \mid \bar{r_2}\bar{r_1}) = \alpha_1 P(\bar{r_2} \mid W_2) \sum_{W_1} P(W_2 \mid W_1) P(W_1 \mid \bar{r_1})$$

$$P(W_1 \mid \bar{r}_1) = \alpha_2 P(\bar{r}_1 \mid W_1) \sum_{W_0} P(W_1 \mid W_0) P(W_0)$$

$$P(w_1 | \bar{r}_1) = \alpha_2 0.4(0.8 * 1.0 + 0.3 * 0.0) = \alpha_2 0.32$$

$$P(\overline{w}_1 \mid \overline{r}_1) = \alpha_2 0.8(0.2 * 1.0 + 0.7 * 0.0) = \alpha_2 0.16$$

$$P(w_1 | \bar{r}_1) = 0.67, P(\overline{w}_1 | \bar{r}_1) = 0.33$$

More Math

$$P(W_{t+1} | W_t) = 0.8$$

$$P(W_{t+1} \mid \overline{W_t}) = 0.3$$

$$P(R \mid W) = 0.6$$

$$P(R \mid \overline{W}) = 0.2$$

$$P(w_1 | \bar{r}_1) = 0.67$$

$$P(\overline{W}_1 | \overline{r}_1) = 0.33$$

$$P(W_2 \mid \bar{r}_2\bar{r}_1) = \alpha_1 P(\bar{r}_2 \mid W_2) \sum_{W_1} P(W_2 \mid W_1) P(W_1 \mid \bar{r}_1)$$

$$P(W_2 \mid \bar{r}_2\bar{r}_1) = \alpha_1 0.4(0.8 * 0.67 + 0.3 * 0.33) = \alpha_1 0.25$$

$$P(\overline{W}_2 \mid \bar{r}_2\bar{r}_1) = \alpha_1 0.8(0.2 * 0.67 + 0.7 * 0.33) = \alpha_1 0.292$$

$$P(W_2 \mid \bar{r}_2\bar{r}_1) = 0.46, P(\overline{W}_2 \mid \bar{r}_2\bar{r}_1) = 0.54$$

Hindsight

$$\begin{split} P(S_k \mid e_t ... e_0) &= \alpha P(e_t ... e_{k+1} \mid S_k, e_k ... e_0) P(S_k \mid e_k ... e_0) \\ &= \alpha P(e_t ... e_{k+1} \mid S_k) P(S_k \mid e_k ... e_0) \\ P(e_t ... e_{k+1} \mid S_k) &= \sum_{S_{k+1}} P(e_t ... e_{k+1} \mid S_k S_{k+1}) P(S_{k+1} \mid S_k) \\ &= \sum_{S_{k+1}} P(e_t ... e_{k+1} \mid S_{k+1}) P(S_{k+1} \mid S_k) \\ &= \sum_{S_{k+1}} P(e_t ... e_{k+1} \mid S_{k+1}) P(e_t ... e_{k+2} \mid S_{k+1}) P(S_{k+1} \mid S_k) \\ &= \sum_{S_{k+1}} P(e_{k+1} \mid S_{k+1}) P(e_t ... e_{k+2} \mid S_{k+1}) P(S_{k+1} \mid S_k) \\ &= \sum_{S_{k+1}} P(e_t ... e_{k+1} \mid S_{k+1}) P(e_t ... e_{k+2} \mid S_{k+1}) P(S_{k+1} \mid S_k) \\ &= \sum_{S_{k+1}} P(e_t ... e_{k+1} \mid S_{k+1}) P(e_t ... e_{k+2} \mid S_{k+1}) P(S_{k+1} \mid S_k) \\ &= \sum_{S_{k+1}} P(e_t ... e_k ... e_k) P(e_t ... e_k ... e_k) P(S_{k+1} \mid S_k) \\ &= \sum_{S_{k+1}} P(e_t ... e_k ... e_k) P(e_t ... e_k ... e_k) P(S_{k+1} \mid S_k) \\ &= \sum_{S_{k+1}} P(e_t ... e_k ... e_k) P(e_t ... e_k ... e_k) P(S_{k+1} \mid S_k) \\ &= \sum_{S_{k+1}} P(e_t ... e_k ... e_k) P(e_t ... e_k ... e_k) P(S_{k+1} \mid S_k) P(S_{k+1} \mid S_k$$

Hindsight Summary

- Forward: Compute k state distribution given
 - Forward distribution up to k
 - Observations up to k
 - Equivalent to monitoring up to k
 - Equivalent to eliminating variables <k
- Backward: Compute conditional evidence distribution after k
 - Work backward from t to k
 - Equivalent to eliminating variables >k
- Smoothed state distribution is proportional to product of forward and backward components

Problem II

Can we revise our estimate of the probability that the student worked at step 1?

We initially thought:

$$P(w_1 | \bar{r}_1) = 0.67, P(\overline{w}_1 | \bar{r}_1) = 0.33$$

Since the student didn't have results at time 2, is it now less likely that he was working at time 1?

Let's Do More Math

$$P(W_{t+1} | W_t) = 0.8$$

$$P(W_{t+1} | \overline{W_t}) = 0.3$$

$$P(R | W) = 0.6$$

$$P(R | \overline{W}) = 0.2$$

$$P(W_1 | \overline{r_1}) = 0.67$$

$$P(\overline{W_1} | \overline{r_1}) = 0.33$$

$$P(W_{1} | \overline{r_{2}}\overline{r_{1}}) = \alpha P(W_{1} | \overline{r_{1}}) P(\overline{r_{2}} | W_{1})$$

$$P(\overline{r_{2}} | W_{1}) = \sum_{W_{2}} P(\overline{r_{2}} | W_{2}) P(W_{2} | W_{1})$$

$$P(\overline{r_{2}} | W_{1}) = (0.4 * 0.8 + 0.8 * 0.2) = 0.48$$

$$P(\overline{r_{2}} | \overline{W_{1}}) = (0.4 * 0.3 + 0.8 * 0.7) = 0.68$$

$$P(W_{1} | \overline{r_{2}}\overline{r_{1}}) = \alpha 0.67 * 0.48 = \alpha 0.3216$$

$$P(\overline{W_{1}} | \overline{r_{2}}\overline{r_{1}}) = \alpha 0.33 * 0.68 = \alpha 0.2244$$

$$P(W_{1} | \overline{r_{2}}\overline{r_{1}}) = 0.59, P(\overline{W_{1}} | \overline{r_{2}}\overline{r_{1}}) = 0.41$$

Checkpoint

- Done: Forward Monitoring and Backward Smoothing
- Monitoring is recursive from the past to the present
- Backward smoothing requires two recursive passes
- Called the forward-backward algorithm
 - Independently discovered many times throughout history
 - Was classified for many years by US Govt.
- Equivalent to doing variable elimination!

What's Left?

- We have seen that filtering and smoothing can be done efficiently, so what's the catch?
- We're still working at the level of atomic events
- There are too many atomic events!
- We need a generalization of Bayes nets to let us think about the world at the level of state variables and not states

Working With DBNs

Can we do variable elimination for DBNs?

Harsh Reality

- While BN inference in the static case was a very nice story, there are essentially no tractable, exact algorithms for DBNs
- Active research area:
 - Approximate inference algorithms
 - · Variational methods
 - Assumed density filtering (ADF)
 - Sampling methods
 - Sequential Importance sampling
 - Sequential Importance sampling with Resampling (SISR, particle filter, condensation, etc.)

Continuous Variables

- How do we represent a probability distribution over a continuous variable?
 - Probability density function
 - Summations become integrals
- Very messy except for some special cases:
 - Distribution over variable X at time t+1 is a multivariate normal with a mean that is a linear function of the variables at the previous time step
 - This is a linear-Gaussian model

Inference in Linear Gaussian Models

- Filtering and smoothing integrals have closed form solution
- Elegant solution known as the Kalman filter
 - Used for tracking projectiles (radar)
 - State is modeled as a set of linear equations
 - S=vt
 - V=at
 - What about pilot controls?

Inference in Hybrid Networks

- Hybrid networks combine discrete and continuous variables
- Usually (but not always) a combination of discrete and Gaussian variables
- Active area of research:
 - Inference recently proven to be NP hard even for simple chains
 - Many new approximate inference algorithms developed each year

Related Topics

- Continuous time
 - Need to model system using differential equations
- Non-stationarity
 - What if the model changes over time?
 - This touches on learning
- What about controlling the system w/actions?
 - Markov decision processes

HMM Conclusion

- Elegant algorithms for temporal reasoning over discrete atomic events, Gaussian continuous variables (many practical systems are such)
- Exact Bayes net methods don't generalize well to state variable representation in the the temporal case: little hope for exponential savings
- Approximate inference for large systems is an active area of research