CPS 170 Introduction

Ron Parr

Contact Information

- Professor
 - Ron Parr
 - D209 LSRC, parr at cs.duke.edu, 660-6537
 - Office hours: TBA
- TA
 - Yuqian Li
 - 006 North, yuqian at cs.duke.edu, 660-4006
 - Office hours: TBA

About Me

- My 12th year at Duke
- Bachelor's degree in philosophy (Princeton)
 - Philosophy of mind
- Ph.D. in computer science (Berkeley)
 - Hierarchical planning under uncertainty
- Current interests:
 - Planning under uncertainty
 - Probabilistic reasoning
 - Game theory
 - Reinforcement learning
 - Robotics
 - Sensing & Vision

Requirements

- Good programming skills:
 - C/C++, Java, Matlab or other high level language
 - Note: We may use python for some assignments
- Other expectations
 - Ability to do short proofs
 - Basic probability concepts (though we will review all of this)
 - Basic algorithmic concepts
 - Complexity O()
 - Analysis of algorithms
 - Math
 - Basic calculus (partial derivatives)

Major Topics Covered

- Search
 - Uninformed search, informed search, CSPs
- Game Playing
 - minimax, alpha-beta search, introduction to game theory
- Logic and Knowledge Representation
 - Propositional Logic, First order logic, theorem proving
- Reasoning under uncertainty
 - Probability, Bayes nets, HMMs & tracking
- Planning
 - Classical planning, Decision theory, stochastic planning(MDPs)
- Introduction to robotics
- Introduction to machine learning

Major Topics Not Covered

- Natural Language
- Vision

Class Mechanics

- Textbook: Artificial Intelligence, A Modern Approach, Russell & Norvig (third edition)
 - Kindle edition is available
 - Not in the book store yet
- Homeworks: 40%
 - Discussion OK, write-up must be your own (see comments on next slide)
- Midterm: 30%
 - Closed book, in class, no collaboration
- Final: 30%
 - Closed book, finals week, no collaboration
- Homeworks will be a mix of short proofs, algorithm design/analysis, and small scale programming projects

Academic Honesty

- Brainstorming with friend is encouraged!
- (But don't confuse brainstorming with letting your smart friends tell you the answers)
- You must write up solutions on your own
- Always ask before using code that is not your own
- Always give credit to original authors if you incorporate code that is not your own into your solutions

Attendance

- You are not required to attend class though it's a good idea
- You will not hurt my feelings if you skip class
- When you attend class:
 - Please be present in mind and body
 - Please don't:
 - Text/email
 - Surf the web
 - Play games
- About multitasking:
 - You might think you can do this w/o cost, but you can't
 - You aren't fooling anybody

Cool AI Applications

- Games (deep blue, Watson, solving checkers, video games)
- Handwriting recognition (PDAs, tablet PCs, post office)
- Speech recognition (my car, voice jail, Siri)
- MS Windows diagnostics
- E-commerce (collaborative filtering)
- Mobile robotics (grand/urban challenges)
- Space exploration
- Logistics planning
- Lots of Google tools
- Computer security

So, what is this AI stuff?

- Make machines think like humans
 - Is this enough?
 - Is this too much?
- Make machines act like humans
 - Is this sufficient?
 - Is this desirable?

Turing Test

- Computer must be indistinguishable from a human based upon written exchanges
 - Does this imply intelligence?
 - How could the computer cheat?
 - Does intelligence imply a certain type of computation?
 - Could an intelligent machine still fail the test?
- Does our notion of intelligence transcend our concept of humanity?

What Intelligence Isn't

- It's not about fooling people
- Fooling people is (in some cases) easy, e.g., eliza: http://chayden.net/eliza/Eliza.html
- More recent efforts: http://chatbots.org/

The Moving Target

- · What is human intelligence?
 - At one time, calculating ability was prized
 - Now it is deprecated
 - Calculators permitted earlier and earlier in school
 - Chess was once viewed as an intelligent task
 - Now, massively parallel computers use not very intelligent search procedures to beat grand masters
 - · Some say Deep Blue wasn't Al
 - Learning once thought uniquely human
 - Now it's a well-developed theory
 - Best backgammon player is a learning program
 - Vagaries of natural language once considered impenetrable
 - Now Watson wins at Jeopardy
 - Siri understands a lot of what you say
- Biological chauvinism at work?

Artificial Flight

• Even seemingly unambiguous terms such as "flight" were subject to biological chauvinism.

Problem: Flight was largely irreducible (no easier subproblems)

 Demonstrable, unambiguous success ended chauvinism – could the same be true for AI?

Why is it hard: Ideal Intelligence

- Intelligence means making optimal choices
- Is anything truly intelligent?
- How do we define optimality?
- It took decades for people to realize that this was a thorny issue. Let's see how this played out:

Early Efforts: General (top down)

- Good news:
 - Many problems can be formalized as instances of
 - Search
 - Logical deduction
 - The space of all proofs is a (somewhat) searchable space
 - Knowledge base + theorem proving provide a satisfying picture or reasoning, knowledge and learning
 - Tell PC:
 - All men are mortal
 - Socrates is a man
 - Ask:
 - Is Socrates mortal?

Bad news for general methods

- · Searching in proof space is hard
- · Representing knowledge is hard
- Knowledge interconnected in strange ways
 - Chairs
 - People
 - Gravity
 - Customs...
- Early efforts were too general, ambitious
 - In most cases, could not solve the general knowledge representation problem
 - Even if KR problem was solved, theorem proving problem was intractable
- But then how does Watson work?

Early Efforts: Special Purpose (bottom up) Methods

- Neural networks
 - Attempted to reproduce function of human neurons
 - Highly abstracted from actual "wetware"
- Proverbial wing-flapping flying machine?
- Success at reproducing low-level tasks
 - Pattern recognition, associative memory
- Nearly became a religion
- Huge gap between low level and high level
- Early efforts were too specific

Overpromising and the AI Winter

- Years of
 - Naïve optimistism
 - Unrealistic assessments of challenges
 - Poor scientific/academic discipline
- Lead to (early 90's)
 - Backlash
 - Reduced government funding
 - Reduced investment from industry
 - The "AI Winter"

Intelligence: A web of abilities

- Intelligence is hard to define in isolation
- Mixture of special purpose and general purpose hardware
 - Special purpose
 - · Recognizing visual patterns
 - · Learning and reproducing language
 - General Purpose
 - · Theorem proving
 - Learning and excelling at new tasks
- Seamless integration
- Solving pieces of the puzzle isn't enough, but it is measurable

Al Moving Forward

- More science/engineering
- · Less philosophy
- Study broad classes of problems that would traditionally require human intelligence (but not intelligence itself)
- Restrict problem somewhat:
 - Develop a crisp input specification
 - Develop a well-defined success criterion
- Develop results with
 - Provable properties
 - Broad applicability
- Extract and study underlying principles behind successful methods

Eye on the prize

- Al's narrower focus has earned the field credibility and practical successes, yet
- Some senior researchers complain that we have taken our eye off the prize:
 - Too much focus on specific problems
 - Lack of interest in general intelligence
- Are we ready to tackle general intelligence?

Scaling Up

- Some have proposed "grand challenges" as a way to build on our successes with smaller problems
- DARPA grand challenge, CALO (precursor to Siri), Watson challenge researchers to integrate, build bigger systems
- Pros:
 - Some impressive successes
 - Some useful lessons learned about integration
- Cons:
 - Some non-general solutions
 - Siphons off a lot of resources, talent

Conclusion

- We want to solve hard problems that would traditionally require human-level intelligence. (Most we consider are at least NP-hard.)
- We want to be good computer scientists, so we force ourselves to use well-defined input/output specifications.
- We aim high, but we let ourselves simplify things if it allows us to produce a general-purpose tool with well-understood properties.
- We hope/expect/try to make these tools the building blocks of more advanced and "intelligent" systems