NP Hardness/Completeness
Overview

Ron Parr
CPS 170

Digression: NP-Hardness

NP hardness is not an Al topic
You will not be tested on it explicitly, but

It’s important for all computer scientists

Understanding it will deepen your understanding of Al (and
other CS) topics

You will be expected to understand its relevance and use
for Al problems

Eat your vegetables; they’re good for you

1/31/12



P and NP

* P and NP are about decision problems
* Pis set of problems that can be solved in polynomial time
* NPisasuperset of P

* NP is the set of problems that:

— Have solutions which can be verified in polynomial time or,
equivalently,

— can be solved by a non-deterministic Turing machine in
polynomial time (OK if you don’t know what that means yet)
* Roughly speaking:
— Problems in P are tractable — can be solved in a reasonable
amount of time, and Moore’s law helps
— Problems in NP might not be tractable

NP-hardness

Many problems in Al are NP-hard (or worse)
What does this mean?
These are some of the hardest problems in CS

Identifying a problem as NP hard means:

— You probably shouldn’t waste time trying to find a
polynomial time solution

— If you find a polynomial time solution, either

* You have a bug

* Find a place on your shelf for your Turing award
NP hardness is a major triumph (and failure) for
computer science theory

1/31/12



Understanding the class NP

* A class of decision problems (Yes/No)

* Solutions can be verified in polynomial time
* Examples:

— Graph coloring: ﬁ

oy

T —g v

— Sortedness: [1234587]

What is NP hardness?

* An NP hard problem is at least has hard as the hardest
problems in NP

* The hardest problems in NP are NP-complete

* Demonstrate hardness via reduction
— Use one problem to solve another
— Ais reduced to B, if we can use B to solve A:

Poly-time

. B Solver
xformation .

A instance —p

— _
~

poly time A solver if B is poly time

1/31/12



Hardness vs. Completeness

* For something to be NP-complete, must be in NP

* If something is NP-hard, it could be even harder
than the hardest problems in NP

* Proving completeness is stronger theoretical
result — says more about the problem

Why care about NP-completeness?

* Solving any one NP-complete problem gives you
the key to all others

e All NP-complete problems are, in a sense,
equivalent

* Insight into solving any one gives you insight into
solving a vast array of problems of extraordinary
practical and economic significance

1/31/12



The First NP Complete Problem
(Cook 1971)

* SAT:
(X, VX, VX )AX, VX, VX)) A L.

* Want to find an assignment to all variables that
makes this expression evaluate to true

* NP-complete for clauses of size 3 or greater
* How would you prove this?

Hardness w/o completeness?

NP hardness is a weaker claim (says less about the
problem) than NP completeness, but

NP hard problems might be harder than NP-complete
NP hard if an NP complete problem is reducible to it
NP completeness = NP hardness + NP membership

Consider the problem #SAT
— How many satisfying assignments to:

X, VX, VXA,V X, VXA L

— Is this in NP? (Not even a decision problem)
— Is it NP-hard?

1/31/12



#SAT is NP-hard

e Theorem: #SAT is NP hard

* Proof:
— Reduce SAT to #SAT

Ifx>0

SAT H#SAT returnY

instance solver — X Else
return N

SAT Solver

P=NP?

* Biggest open question in CS

* Can NP-complete problems be solved in
polynomial time?

* Probably not, but nobody has been able to
prove it yet

* Recent attempt at proof detailed in NY Times,
one of many false starts:
http://www.nytimes.com/2009/10/08/
science/Wpolynom.html

1/31/12



How challenging is “P=NP?”

* Princeton University CS department
* See: http://www.cs.princeton.edu/general/bricks.php
* Photo from: http://stuckinthebubble.blogspot.com/2009/07/three-interesting-points-on-princeton.html

How To Avoid Embarrassing Yourself

Don’t say: “I proved that it requires exponential time.”
if you really meant:

“I proved it’s NP-Hard/Complete”

Don’t say: “The problem is NP” (which doesn’t even make sense)
if you really meant:

“The problem NP-Hard/Complete”

Don’t reduce new problems to NP-hard complete problems if you
meant to prove the new problem is hard

Such a reduction is backwards. What you really proved is that you
can use a hard problem to solve an easy one. Always think carefully
about the direction of your reductions

1/31/12



1/31/12

NP-Completeness Summary

* NP-completeness tells us that a problem belongs
to class of similar, hard problems.
* What if you find that a problem is NP hard?
— Look for good approximations
— Find different measures of complexity
— Look for tractable subclasses
— Use heuristics




