Particle Filters

Ron Parr CPS 170

Outline

- Problem: Track state over time
 - State = position, orientation of robot (condition of patient, position of airplane, status of factory, etc.)
- Challenge: State is not observed directly
- Solution: Tracking using a model
 - Exact
 - Approximate (Particle filter)

Example

- Robot is monitoring door to the AI lab
- D = variable for status of door (True = open)
- Initially we will ignore observations
- Define Markov model for behavior of door:

$$P(D_{t+1} \mid D_t) = 0.8$$

$$P(D_{t+1} \mid \overline{D}_t) = 0.3$$

Problem

Suppose we believe the door was open with prob. 0.7 at time t.

What is the prob. that it will be open at time t+1?

$$P(D_{t+1} \mid D_t) = 0.8$$

$$P(D_{t+1} \mid \overline{D}_t) = 0.3$$

Staying open Switching from closed to open

$$P(D_{t+1}) = P(D_{t+1} \mid D_t)P(D_t) + P(D_{t+1} \mid \overline{D_t})P(\overline{D_t})$$

= 0.8 * 0.7 + 0.3 * 0.3 = 0.65

Generalizing

• Suppose states are not binary:

$$P(S_{t+1}) = \sum_{S_t} P(S_{t+1} \mid S_t) P(S_t)$$

• Suppose states are continuous

$$p(S_{t+1}) = \int_{S_t} p(S_{t+1} \mid S_t) p(S_t) dS_t$$

• Issue: For large or continuous states spaces this may be hard to deal with exactly

Monte Carlo Approximation (Sampling)

 We can approximate a nasty integral by sampling and counting:

$$p(S_{t+1}) = \int_{S_t} p(S_{t+1} \mid S_t) p(S_t) dS_t$$

- Repeat n times:
 - Draw sample from p(S_t)
 - Simulate transition to S_{t+1}
- Count proportion of states for each value of S_{t+1}

Example

- $P(D_{t+1} | D_t) = 0.8$
- $P(D_{t+1} \mid \overline{D}_t) = 0.3$

- Pick n=1000
 - 700 door open samples
 - 300 door closed samples
- For each sample generate a next state
 - For open samples use prob. 0.8 for next state open
 - For closed samples use prob. 0.3 for next state open
- Count no. of open and closed next states
- Can prove that in limit of large n, our count will equal true probability (0.65)

Example Revisited

- D = Door status
- O = Robot's observation of door status
- Observations may not be completely reliable!

$$P(D_{t+1} \mid D_t) = 0.8$$

$$P(D_{t+1} \mid \overline{D}_t) = 0.3$$

$$P(O | D) = 0.6$$

$$P(O \mid \overline{D}) = 0.2$$

Modified Sampling

- Problem: How do we adjust sampling to handle evidence?
- Solution: Weight each sample by the probability of the observations
- Called importance sampling, or likelihood weighting
- Does the right thing for large n

Example with evidence

 $P(D_{t+1} \mid D_t) = 0.8$

 $P(D_{t+1} \mid \overline{D}_t) = 0.3$

P(O | D) = 0.6

 $P(O \,|\, \overline{D}) = 0.2$

- Suppose we observe door closed at t+1
- Pick n=1000
 - 700 door open samples
 - 300 door closed samples
- For each sample generate a next state
 - For open samples use prob. 0.8 for next state open
 - For closed samples use prob. 0.3 for next state open
 - If next state is open, weight by 0.4
 - If next state is closed, weight by 0.8
- Compute weighted sum of no. of open and closed states

Problems with IS (LW)

- Sequential importance sampling (SIS) does the right thing for the limit of large numbers of samples
- Problems for finite numbers of samples:
 - Effective sample size (total weight of samples) drops
 - Eventually
 - Something unlikely happens, or
 - A sequence of individually somewhat likely events has the effect of a single unlikely event, and
 - Population of samples drifts away from reality
- Over time: Estimates become unreliable

Solution: SISR (PF)

Sequential Importance Sampling with Resampling = Particle Filter

- Maintain n samples for each time step
- Repeat n times:
 - Draw sample from p(S_t)
 (according to current weights)
 - Simulate transition to S_{t+1}
 - Weight samples by evidence
- For discrete domains, estimate S_{t+1} by counting proportion of states for each value of S_{t+1}

Example: Robot Localization

- Particle filters combine:
 - A model of state change
 - A model of sensor readings
- To track objects with hidden state over time
- Robot application:
 - Hidden state: Robot position, orientation
 - State change model: Robot motion model
 - Sensor model: Laser rangefinder error model
- Note: Robot is tracking itself!

- Sample n robot states
- For each state
 - Simulate next state (action model)
 - Weight states (observation model)
 - Normalize
- Repeat

Robot States

- Robot has X,Y,Z,θ
- Usually ignore z
 - assume floors are flat
 - assume robot stays on one floor
- Form of samples

$$- (X_i,Y_i,\theta_i,p_i)$$

$$-\sum_{i} p_{i} = 1$$

- Sample n robot states
- For each state
 - Simulate next state (action model)
 - Weight states (observation model)
 - Normalize
- Repeat

Sampling Robot States

- Need to generate n new samples from our previous set of n samples
- Draw n new robot states with replacement
 - for i=1 to n
 - r = rand[0...1]
 - temp = k = 0
 - while(temp <= r)
 - temp=temp+samples[k].p
 - k = k+1
 - newsamples[i] = samples[k-1] (n.b. this should *copy*)
 - samples = newsamples

- Sample n robot states
- For each state
 - Simulate next state (action model)
 - Weight states (observation model)
 - Normalize
- Repeat

Action Model

- How far has the robot traveled?
- What does the odometer tell us?

Actual path was a closed loop on the second floor!

Odometer Model

- Odometer is:
 - Relatively accurate model of wheel turn
 - Very inaccurate model of actual movement
- Actual position = odometer X,Y,θ + random noise

Simulation Implementation

- Start with odometer readings
- Add linear correction factor

$$\begin{array}{l} - \quad X = a_x * X + b_x \\ - \quad Y = a_y * Y + b_y \\ - \quad \theta = a_\theta * \theta + b_\theta \end{array} \end{array} \qquad \begin{array}{l} \text{Linear correction} \\ \text{(determined experimentally)} \end{array}$$

Add noise from the normal distribution

$$\begin{array}{l} - \ X = X + N(0,s_x) \\ - \ Y = Y + N(0,s_x) \\ - \ \theta = \theta + N(0,s_\theta) \end{array} \end{array}$$

$$N(\mu,s) \ returns \ random \ noise \\ from \ normal \ distribution \ with \\ mean \ \mu \ and \ standard \ deviation \ s \\ (standard \ deviation \ determined \ experimentally)$$

- Sample n robot states
- For each state
 - Simulate next state (action model)
 - Weight states (observation model)
 - Normalize
- Repeat

Laser Error Model

- Laser measures distance at 180 one degree increments in front of the robot (height is fixed)
- Laser rangefinder errors also have a normal distribution

Prob. of measurement

Distance from closest occupied square to endpoint of laser cast

Laser Error Model Contd.

• Probability of error in measurement k for sample i (normal)

$$p_{ik}(x_k) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-x_k^2}{2\sigma^2}}$$

- \bullet x_k is distance of laser endpoint to closest obstacle
- σ is standard deviation in this measurement (estimated experimentally), usually a few cm.

Laser Error Model Contd.

- Laser measurements are independent
- Weight of sample is product of errors:

$$p_i = \prod_k p_{ik}$$

- Note: Good to bound x to prevent a single bad measurement from making p_i too small
- Compute new weights for all particles:
- for i=1 to n
 - $samples[i].p = p_i$

Main Loop

- Sample n robot states
- For each state
 - Simulate next state (action model)
 - Weight states (observation model)
 - Normalize
- Repeat

- Sample n robot states
- For each state
 - Simulate next state (action model)
 - Weight states (observation model)
 - Normalize
- Repeat

How do we use this?

Best Guess of Position

 Recover best guess of true position from weighted average of particle positions:

$$\bar{x} = \sum_{i} sample[i] x * sample[i].p$$