Planning

CPS 170
Ron Parr

An Example Planning Application

Space shuttle arm is currently controlled by a highly trained human.

Planning Application

e Remove human from the control loop
e Specific goals for system:
— Rearrange items in cargo bay
— Connect space station pieces
e Assuming mechanical engineering issues
can be resolved:
— Arm could work while astronauts sleep
— Complicated training could be eliminated

Some Actual Planning Applications

Used to fulfill mission objectives in Nasa’s Deep Space
One (Remote Agent)

— Particularly important for space operations due to latency
— Also used for rovers

Aircraft assembly schedules

Logistics for the U.S. Navy

Observation schedules for Hubble space telescope
Scheduling of operations in an Australian beer factory

Scheduling
e Many “planning” problems are scheduling problems

e Scheduling can be viewed as a generalization of the
planning problem to include resource constraints
— Time & Space
— Money & Energy

e Many principles from regular planning generalize,
but some extensions (not discussed here) are used

Characterizing Planning Problems

Start state (group of states)
Goal — almost always a group of states
Actions

Objective: Plan = A sequence of actions that is
guaranteed to achieve the goal.

Like everything else, can view planning as search...
So, how is this different from search?

What makes planning special?

e States typically specified by a set of relations or propositions:
— On(solar_panels, cargo_floor)

— arm_broken

e Goal is almost always a set

— Typically care about a small number of things:
¢ at(Ron, airport),
e parked_in(X, car_of(Ron))
e airport_parking_stall(X)

— Many things are irrelevant
o parked_in(Y, car_of(Bill))
¢ adjacent(X,Y)

e Branching factor is large

Planning Algorithms

Extremely active and rapidly changing area

Annual competitions pit different algorithms against each
other on suites of challenge problems

Algorithms compete in different categories
— General vs. Domain specific
— Optimal vs. Satisficing

No clearly superior method has emerged, though
there are trends

Planning With Logic/Theorem Proving

* Need to describe
effects of actions
with logic

e Ask for the
existence of plans
that achieve our
goals

e Challenge: Talking
about dynamic
situations in logic

Situations

e Recall that we can’t have contradictions in our
knowledge base — OTW, can prove anything

* Need to index our claims about the world with
time in some way (otherwise changes would
create contradictions)

e Add an extra argument onto every predicate
indicating when things are true:
— on(table, z, s)
— on(x,y,s)

e result(s,a) =result of doingains

(result(s,a) = result(s’,a,)) iff ((s=s’) AND (a=a’))

Describing Actions

e Let’'s move Afrom Bto C

e applicable(move(A,B,C,S)) :-
—on(A,B,S)
— clear(C,S)

e S’=result(move(A,B,C,S), S) :-
— applicable(move(A,B,C,S))
— clear(B,S’)
—-on(A,CS')

Successor State Axioms

e Action descriptions tell us what has
changed, but how do we say what persists?

e This is the “frame problem”

e Successor state axioms:
— On(C,D,result(A,S)) iff applicable(A,S) AND
¢ On(C,D,S), Al=move, OR
* On(C,D,S), A=move(A,B,C), C!=A, D!=B, OR
e A=move(C,E,D)

* Need one of these for every proposition!

Finding the Plan

e Assume we have:
— Descriptions of all actions
— Successor-state axioms

— Description of the initial state (situation)
e Q: How do we find the plan?

e A: Ask theorem prover if there exists a situation
in which the goal is true!

e Theorem prover will return plan as a binding:
result(move(X,Table,(result(move(Y,X,Z,S))

Planning via Theorem Proving:
A Good ldea?

e Pros:
— Very general
— Very powerful representation
— Access to theorem proving infrastructure

e Cons:
— Awkward representation (unless you are a logician)
— Slow in practice (price of generality)

Overcoming Limitations of
Planning via Theorem Proving

e Simplify the representation
e Avoid successor state axioms

e Avoid generality of full, first order logic in
hopes of allowing faster, special purpose
algorithms for planning

PDDL

e Actions have a set of preconditions and effects

e Think of the world as a database

— Preconditions specify what must be true in the database for
the action to be applied

— Effects specify which things will be changed in the database if
the action is taken

e NB: PDDL supersedes an earlier, similar representation
called STRIPS

move(obj,from,to)

e Preconditions
— clear(obj)
— on(obj,from)
— clear(to)

e Effects
— on(obj,to)
— clear(from)
— not(on(obj,from))
— not(clear(to))

move(y,X,z)

Limitations of PDDL

Assumes that a small number of things
change with each action

— Dominoes

— Pulling out the bottom block from a stack

Preconditions and effects are conjunctions

No quantification

Closed world assumption (negation in
effects only implemented as deletion)

Planning Actions vs. Search Actions

¢ Plan actions are really action schemata

e Every PDDL rule specifies a huge number of ground-

level actions

e Consider move(obj, from, to)

— Assume n objects in the world
— This action alone specifies O(n3) ground actions
— Planning tends to have a very large action space

e Compare with CSPs

Planning vs. CSPs

Both have large action spaces
CSPs are atemporal
CSP: Effects of actions (assignments) are implicit

Planning: Path matters - Knowing that solution exists isn’t
sufficient

10

How hard is planning?

e Planning is NP hard

e How can we prove this?
— Use Planning to solve SAT

— Any SAT instance can be converted to a
planning problem in polynomial time

— Polynomial time planning algorithm would
imply polynomial time solution to SAT

Is planning NP-complete?

NO!
Consider the towers of Hanoi:

— http://www.mazeworks.com/hanoi/index.htm

— PDDL actions are the block moving actions
Requires exponential number of moves
Planning is actually PSPACE complete
Planning with bounded plans is NP-complete

11

Should plan size worry us?

e What if you have a problem with an exponential
length solution?

e Impractical to execute (or even write down) the
solution, so maybe we shouldn’t worry

e Sometimes this may just be an artifact of our
action representation

— Towers of Hanoi solution can be expressed as a
simple recursive program

— Nice if planner could find such programs

Planning Using Search

e Forward Search:

— As with theorem proving, blind forward search is
problematic because of the huge branching factor

— Some success using this method with carefully chosen
action pruning heuristics (not covered in class)
e Backward Search:

— As with theorem proving, tends to focus search on
relevant terms

— Called “Goal Regression” in the planning context

12

Goal Regression

e Goal regression is a form of backward search from goals
e Basic principle goes back to Aristotle
e Embodied in earliest Al systems
— GPS: General Problem Solver by Newell & Simon
e Cognitively plausible
e |dea:
— Pick actions that achieve (some of) your goal
— Make preconditions of these actions your new goal
— Repeat until the goal set is satisfied by start state
e Note: Similar to backward chaing in theorem
proving

Goal Regression Example

Regress on(x,z)
through move(z,table,x)

New goal:
clear(x)

Goal: on(x,z)

Facts About Goal Regression

e Elegant solution to the problem of backward
search from multiple goal states

— In planning, goal state is usually a set of states
— Does backward search at the level of state sets
e Goal regression is sound and complete

e Need to be careful to avoid endless loops on
problems like Sussman anomaly (coming up)

Heuristics in planning
e Need heuristics for searching in planning, but...

e Planning problems tend to defy natural efforts to

develop good heuristics:
— Ignoring preconditions: Finding shortest path while ignoring
preconditions is still an intractable problem
— lgnoring deletions: Also intractable to find shortest path
— (Above two difficulties mean that coming with an admissible heuristic is
non-trivial.)
— Counting number of conjuncts true (admissible but very weak)

14

The Sussman Anomaly

Goal: on(x,y), on(y,z)

Problems with naive subgoaling

e The number of conjuncts satisfied may not be a
good heuristic

e Achieving individual conjuncts in isolation may
actually make things harder

e Causes simple planners to go into loops

15

Planning Features & Challenges

e State space is very large

Goals usually defined over state sets

Very large, implicitly defined action space

Difficult to come up with good heuristics

Path (plan) usually matters

e We will see that plan graphs are a clever way
of coming up with good heuristics for planners

Can our expertise in CSPs help?

e Can planning be reduced to CSPs?
e CSPs are a more restrictive language
¢ Need to consider bounded-length plans

— In general, this isn’t too much of a problem because
extremely long plans are an indication that we need to
reformulate the problem (Towers of Hanoi)

e Our hope: Solve plan as a CSP at let our CSP
insights do the work for us (Doesn’t quite work,
but it helps...)

16

Formulating Planning as a CSP

e Introduce Action(a,i) (binary) to indicate if action
a is taken at step i.
— We introduce |Actions| x plan_length variables

e We also need to represent the statements in our
database using proposition(p,i) (binary) to
indicate the truth of proposition p at time |

— This introduces |propositions| x plan_length
variables

— But there’s a catch...

Propositionalizing

e Also called “grounding out”
e Recall that domain descriptions an actions
involve relations:
— on(x,table)
— clear(x)
e Propositions don’t take arguments
— arm_broken

17

Converting to Propositional Form

Consider on(x,y)

Note that we considered this type of issue before when thinking
about plan branching factor

If there are n objects in the world, how many propositions do we
need to express all possible realizations of on(x,y)?

What if there are k relations that each take d variables?

Digression on Propositionalizing

It turns out that in many planning domains the number of
actions (k) is relatively low

The number of variables involved in each action is usually
relatively low too

Hard to think of an action that involves six or more variables

In general, propositionalizing is viewed as an inelegant trick that
people would like to avoid

Is fast planning possible w/o this?

18

Back to CSP formulation

¢ We now have action(move_x_y z, i) =t iff we move x
fromytozattimei.

e We also have proposition(on_y z,i)=tiffyison z at
time i.

e Now we need to set up our constraints so that the
problem is satisfiable iff there exists a plan

Plan CSP Constraints

e Actions must be sequential
— For all a,a’ not(action(a,i) and action(a’,i))
— Another quadratic factor!

e Actions’ effects on the world. If action(a,i)=t
— Proposition(p,i-1) = t for each p in preconditions
— Proposition(p,i)=t for each true p in effects list
— Proposition(p,i)=f for each false p in effects list

— This is linear in the new action, proposition space

19

What’s Missing?

e We need to express that propositions persist
— Proposition(p,i) = f unless
e |t was true in previous step and not deleted
e It was false in previous step but not asserted

e We need to assert initial and final states
— Easier than it sounds

— We just set these variables to have the right values
and the CSP does the rest

This works, but...

e The CSP is very large

e |t is very highly connected
— Variable elimination is hard
— Hard to do k-consistency

e Turns a hard planning problem into a hard(er)
CSP ®

20

Plan Graphs

e High Level Idea:

Avoid constructing the exact CSP

Construct a sequence of simplified (trivially solvable) CSPs
corresponding to different plan lengths

Never delete things
If plan of size k exists, then CSP of size k is satisfiable
Note is this if, not iff

e Why this is useful:

Did not have a good method of coming up with admissible
heuristics for planning

If simplified CSPs are cheap to solve, then we have a reasonable,
admissible heuristic

Initial

Plan Graph Form

Possible ; .

t=1 actions 1l:9_0155|ble Possible Goal
L . t=2 actions/ - Or
configurations Level

Consider a particular world configuration c

Find the first phase containing all propositions in c

Distance to goal will be an admissable heuristic for forward search
and backward search.

21

Example Planning Graph

(/ delete
& Placeholder -on(x,y)

on(x,y)
on(y,z) (persistence) \ // on(y,z)
on(z,table\ ——— actions on(z,table)

clear(x) / clear(x)
on(x,table)
move(x,y,table)
Starting
configuration Possible t=1
configurations
Possible t=1 8
actions

Facts About Planning Graphs

e Similar to CSP constraint graph

e The planning graph includes everything that
might be true at a particular time

* Includes all actions that might be possible at
a particular time

e |s a relaxation of the original problem

22

Why this is good

Relaxations are a good way of developing
admissable heuristics

A major difficulty with planning is that we have
trouble coming up with good heuristics

Note that plan graphs can provide admissable
heuristics for either direction (forward or
regression [means/ends] search)

Why this isn’ t good enough

Produces fairly weak heuristics
Propositions are never really deleted
Can take many actions simultaneously
The problem is now too relaxed

— Need to figure out a way to use structure more
effectively without losing
* Problem independence
e Clarity, speed
¢ Admissability

23

Mutual Exclusion Between Actions

e Two real (non-persistence) actions can’t be taken
simultaneously; we mark these mutually exclusive

e Other types of mutual exclusion
— Inconsistent effects/Interference
e persist(on_x_y,1)
e action(move _x_y z,1)
— Competing needs
* Precondition appears positive in one action
e Appears negated in another

Extending graphs using mutex

For each planning phase:

Generate all actions with non-mutex preconditions

Mark as mutex all action/maintain pairs that conflict

Mark as mutex all action/action pairs with mutex preconds
Generate all potential propositions for next time step
Mark pairs of propositions that can only be generated by
mutex actions as mutex

ukhwnNeE

We now think of everything in terms of mutually
compatible sets of propositions.

24

Plan Graphs with Mutex Constraints

on(C, A) \ on(C, A)

Move(C,A,B) On(A, Table)

e Each level has literals
that “could be true” at
that level

On(A, Table)

e Mutex (mutual exclusion)

Clear(C) Clear(€) relations indicate
on(B. T incompatible actions/
On(, Tableln/} n(B, Taie) literals
Clear(B)

Move(B,Table,C)

Slide courtesy Vince Conitzer

Plan Graphs with Mutex Constraints

e Extend forward until goal conjunctions appear non-mutex
e This is still a relaxation of the problem

¢ In essence, we have relaxed the original planning CSP so that we
only worry about 2-consistency

e We still have an admissable heuristic

e For any configuration, we search for the earliest one in which the
configuration propositions appear in non-mutex form

How do we use this?

e Original graphplan algorithm had a special planning
algorithm that work with the plan graph

e Modern approaches primarily use the plan graph in
conjunction with some kind of search

e Despite some apparent complexity, this turns out to be

much, much cleaner, faster and easier to implement
than planning algorithms from the 80s and early 90s

How well does it work?

e The initial graphplan algorithm was so much
faster than competing algorithms it was hard to
even compare them on the same scale.

e There is a web page devoted to graphplan:
— http://www.cs.cmu.edu/~avrim/graphplan.html

26

Graphplan Summary

e Graphplan combines two concepts:
— Constraint-based reasoning with a form of 2-consistency
— Basic search
¢ More elaborate approaches are possible:
— Add more complicated constraints to plan graph
— Trade off: As plan graph becomes richer:
e Heuristic values get closer to true plan length

e Cost of building/using plan graph grows steeply

e Graphplan combines our knowledge of good search methods with
our knowledge of good CSP methods

Other Approaches: SAT

e If we can convert planning to a CSP (kind of) and get
some advantage from viewing it as a CSP, why not try
converting to some other problem

e SATPlan converts (bounded length) planning
problems to SAT problems

e Uses off-the-shelf SAT solvers

e As with plan graphs, this requires propositionalizing
(grounding out) the problem

27

Interesting things about SATPlan

This actually works pretty well for some domains

Details of the transformation are somewhat tricky

As with the CSP formulation, it tends to produce very
large problem instances

e Can cause problems for domains with many items

Modern Planning Conclusion

e Fast planning algorithms seem to rely simple, fast
underlying methods

e Ruling out bad things quickly seems to help
— Heuristics used in SAT solvers (not covered here)
— Constraint propagation in graphplan variants

e Still a very open area, not as clean as search/CSPs

28

What’s Missing?

e As described, plans are “open loop”
* No provisions for:

— Actions failing

— Uncertainty about initial state

— Observations

e Solutions:
— Plan monitoring, replanning
— Conformant/Sensorless planning
— Contingency planning

Planning Under Uncertainty

e What if there is a probability distribution over possible
outcomes?

— Called: Planning under uncertainty, decision theoretic planning, Markov
Decision Processes (MDPs)

— Much more robust: Solution is a “universal plan”, i.e., a plan for all
possible outcomes (monitoring and replanning are implicit)

— Much more difficult computationally
e What if observations are unreliable?
— Called: “Partial Observability”, Partially Observable MDPs (POMDPs)
— Applications to medical diagnosis, defense
— Way, way harder computationally

29

