Reinforcement Learning

Ron Parr CPS 170

RL Highlights

- Everybody likes to learn from experience
- Use ML techniques to generalize from *relatively small amounts* of experience
- Some notable successes:
 - Backgammon
 - Flying a helicopter upside down
 - Aerobatic helicopter maneuvers

From Andrew Ng's home page

 Sutton's seminal RL paper is 96th most cited ref. in computer science (Citeseerx 03/12); Sutton & Barto RL Book is the 9th most cited

Comparison w/Other Kinds of Learning

- Learning often viewed as:
 - Classification (supervised), or
 - Model learning (unsupervised)
- RL is between these (delayed signal)
- What the last thing that happens before an accident?

Overview

- Review of value determination
- Motivation for RL
- Algorithms for RL
 - Overview
 - TD
 - Q-learning
 - Approximation

Solving for Values

$$\mathbf{V}_{\pi} = \gamma \mathbf{P}_{\pi} \mathbf{V}_{\pi} + \mathbf{R}_{\pi}$$

For moderate numbers of states we can solve this system exacty:

$$\mathbf{V}_{\pi} = (\mathbf{I} - \gamma \mathbf{P}_{\pi})^{-1} \mathbf{R}_{\pi}$$

Guaranteed invertible because γP_n has spectral radius <1

Iteratively Solving for Values

$$V_{\pi} = \gamma P_{\pi} V + R$$

For larger numbers of states we can solve this system indirectly:

$$\mathbf{V}_{\pi}^{i+1} = \gamma \mathbf{P}_{\pi} \mathbf{V}_{\pi}^{i} + \mathbf{R}$$

Guaranteed convergent because γP_{π} has spectral radius <1 for γ <1

Convergence not guaranteed for $\gamma=1$

Overview

- Review of value determination
- Motivation for RL
- Algorithms for RL
 - Overview
 - TD
 - Q-learning
 - Approximation

Why We Need RL

- Where do we get transition probabilities?
- How do we store them?
 - Big problems have big models
 - Model size is quadratic in state space size
- Where do we get the reward function?

RL Framework

- Learn by "trial and error"
- No assumptions about model
- No assumptions about reward function
- Assumes:
 - True state is known at all times
 - Immediate reward is known
 - Discount is known

RL for Our Game Show

- Problem: We don't know probability of answering correctly
- Solution:
 - Buy the home version of the game
 - Practice on the home game to refine our strategy
 - Deploy strategy when we play the real game

Model Learning Approach

- Learn model, solve
- How to learn a model:
 - Take action a in state s, observe s'
 - Take action a in state s, n times
 - Observe s' m times
 - P(s'|s,a) = m/n
 - Fill in transition matrix for each action
 - Compute avg. reward for each state
- Solve learned model as an MDP

Limitations of Model Learning

- Partitions learning, solution into two phases
- Model may be large
 - Hhard to visit every state lots of times
 - Note: Can't completely get around this problem...
- Model storage is expensive
- Model manipulation is expensive

Overview

- Review of value determination
- Motivation for RL
- Algorithms for RL
 - TD
 - Q-learning
 - Approximation

Temporal Differences

- One of the first RL algorithms
- Learn the value of a fixed policy (no optimization; just prediction)
- Recall iterative value determination:

$$V_{\pi}^{i+1}(s) = R(s,\pi(s)) + \gamma \sum_{s'} P(s'|s,\pi(s)) V_{\pi}^{i}(s')$$

Problem: We don't know this.

Temporal Difference Learning

Remember Value Determination:

$$V^{i+1}(s) = R(s,\pi(s)) + \gamma \sum_{s'} P(s' \mid s,\pi(s)) V^{i}(s')$$

• Compute an update as if the observed s' and r were the only possible outcomes:

$$V^{temp}(s) = r + \gamma V^{i}(s')$$

• Make a small update in this direction:

$$V^{i+1}(s) = (1 - \alpha)V^{i}(s) + \alpha V^{temp}(s)$$

 $0 < \alpha \le 1$

Idea: Value Function Soup

Suppose: $\alpha = 0.1$

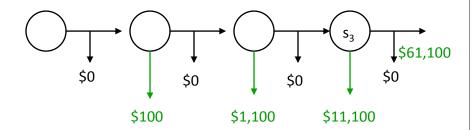
Upon observing s':

- •Discard 10% of soup
- •Refill with V^{temp}(s)
- •Stir
- Repeat

One vat for each state

$$V^{i+1}(s) = (1-\alpha)V^{i}(s) + \alpha V^{temp}(s)$$

Example: Home Version of Game



Suppose we guess: V(s₃)=15K We play and get the question wrong

V^{temp}=0

 $V(s_3) = (1-\alpha)15K + \alpha0$

Convergence?

- Why doesn't this oscillate?
 - e.g. consider some low probability s' with a very high (or low) reward value

- This could still cause a big jump in V(s)

Convergence Intuitions

- Need heavy machinery from stochastic process theory to prove convergence
- Main ideas:
 - Iterative value determination converges
 - TD updates approximate value determination
 - Samples approximate expectation

$$V^{i+1}(s) = R(s,\pi(s)) + \gamma \sum_{s'} P(s'|s,\pi(s)) V^{i}(s')$$

Ensuring Convergence

- Rewards have bounded variance
- $0 \le \gamma < 1$
- Every state visited infinitely often
- Learning rate decays so that:

$$-\sum_{i}^{\infty} \alpha_{i}(s) = \infty$$
$$-\sum_{i}^{\infty} \alpha_{i}^{2}(s) < \infty$$

These conditions are jointly *sufficient* to ensure convergence in the limit with probability 1.

How Strong is This?

- Bounded variance of rewards: easy
- Discount: standard
- · Visiting every state infinitely often: Hmmm...
- Learning rate: Often leads to slow learning
- Convergence in the limit: Weak
 - Hard to say anything stronger w/o knowing the mixing rate of the process
 - Mixing rate can be low; hard to know a priori
- Convergence w.p. 1: Not a problem.

Using TD for Control

• Recall value iteration:

$$V^{i+1}(s) = \max_{a} R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{i}(s')$$

• Why not pick the maximizing a and then do:

$$V^{i+1}(s) = (1 - \alpha)V^{i}(s) + \alpha V^{temp}(s)$$

- s' is the observed next state after taking action a

Problems

- Pick the best action w/o model?
- Must visit every state infinitely often
 - What if a good policy doesn't do this?
- Learning is done "on policy"
 - Taking random actions to make sure that all states are visited will cause problems

Q-Learning Overview

- Want to maintain good properties of TD
- Learns good policies and optimal value function, not just the value of a fixed policy
- Simple modification to TD that learns the optimal policy regardless of how you act! (mostly)

Q-learning

• Recall value iteration:

$$V^{i+1}(s) = \max_{a} R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{i}(s')$$

• Can split this into two functions:

$$Q^{i+1}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{i}(s')$$
$$V^{i+1}(s) = \max_{a} Q^{t+1}(s,a)$$

Q-learning

- Store Q values instead of a value function
- Makes selection of best action easy
- Update rule:

$$Q^{temp}(s,a) = r + \gamma \max_{a'} Q^i(s',a')$$

$$Q^{i+1}(s,a) = (1-\alpha)Q^{i}(s,a) + \alpha Q^{temp}(s,a)$$

Q-learning Properties

- Converges under same conditions as TD
- Still must visit every state infinitely often
- Separates policy you are currently following from value function learning:

$$Q^{temp}(s,a) = r + \gamma \max_{a'} Q^{i}(s',a')$$

$$Q^{i+1}(s,a) = (1-\alpha)Q^{i}(s,a) + \alpha Q^{temp}(s,a)$$

Value Function Representation

- Fundamental problem remains unsolved:
 - TD/Q learning solves model-learning problem, but
 - Large models still have large value functions
 - Too expensive to store these functions
 - Impossible to visit every state in large models
- Function approximation
 - Use machine learning methods to generalize
 - Avoid the need to visit every state

Function Approximation

- General problem: Learn function f(s)
 - Linear regression
 - Neural networks
 - State aggregation (violates Markov property)
- Idea: Approximate f(s) with $g(s,\theta)$
 - g is some easily computable function of s and θ
 - Try to find θ that minimizes the error in g

Linear Regression

• Define a set of basis functions (vectors)

$$\phi_1(s), \phi_2(s)...\phi_k(s)$$

• Approximate f with a weighted combination of these

$$g(s) = \sum_{i=1}^{k} w_{i} \phi_{j}(s)$$

• Example: Space of quadratic functions:

$$\phi_1(s) = 1, \phi_2(s) = s, \phi_3(s) = s^2$$

· Orthogonal projection minimizes SSE

Updates with Approximation

• Recall regular TD update:

$$V^{i+1}(s) = (1 - \alpha)V^{i}(s) + \alpha V^{temp}(s)$$

• With function approximation:

$$V(s) \approx V(s, w)$$
 Vector operations

• Update:

$$w^{i+1} = (1-\alpha)w^{i} + \alpha V^{temp}(s)\nabla_{\theta}V(s,w)$$

For linear value functions

• Gradient is trivial:

$$V(s,w) = \sum_{j=1}^{k} w_{j} \phi_{j}(s)$$

$$\nabla V(s,w) = \phi_{j}(s)$$

$$\nabla_{w_j} V(s,w) = \phi_j(s)$$

• Update is trivial:

$$W_{i}^{i+1} = (1-\alpha)W_{i}^{i} + \alpha V^{temp}(s)W\phi_{i}(s)$$

Properties of approximate RL

- Exact case (tabular representation) = special case
- Can be combined with Q-learning
- Convergence not guaranteed
 - Policy evaluation with linear function approximation converges if samples are drawn "on policy"
 - In general, convergence is not guaranteed
 - Chasing a moving target
 - Errors can compound
- Success requires very well chosen features

How'd They Do That???

- Backgammon (Tesauro)
 - Neural network value function approximation
 - TD sufficient (known model)
 - Carefully selected inputs to neural network
 - About 1 million games played against self
- Helicopter (Ng et al.)
 - Approximate policy iteration
 - Constrained policy space
 - Trained on a simulator

Swept under the rug...

- Difficulty of finding good features
- Partial observability
- Exploration vs. Exploitation

Conclusions

- Reinforcement learning solves an MDP
- Converges for exact value function representation
- Can be combined with approximation methods
- Good results require good features