CPS 170 Search

Ron Parr

With thanks to Vince Conitzer for some slides and figures

What is Search?

- Search is a basic problem-solving method
- We start in an initial state
- We examine states that are (usually) connected by a sequence of actions to the initial state
- Note: Search is (usually) a thought experiment (separate topic: Real Time Search)
- We aim to find a solution, which is a sequence of actions that brings us from the initial state to the goal state, minimizing cost

Search vs. Web Search

- When we issue a search query using Google, does Google really go poking around the web for us?
- Not in real time!
- Google spiders the web continually, caches results
- Uses page rank algorithm to find the most "popular" web pages that are consistent with your query

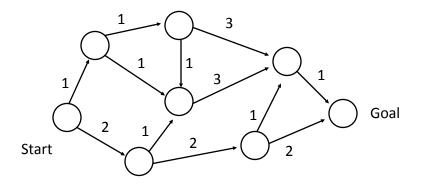
Overview

- Problem Formulation
- Uninformed Search
 - DFS, BFS, IDDFS, etc.
- Informed Search
 - Greedy, A*
- Properties of Heuristics

Problem Formulation

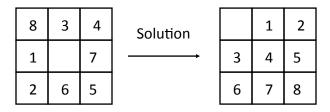
- Four components of a search problem
 - Initial State
 - Actions
 - Goal Test
 - Edge costs (uniform, or varying per edge?)
- Optimal solution = lowest path cost to goal

Example: Path Planning



Find shortest route from one city to another using highways.

Example 8(15)-puzzle



Possible Start State

Goal State

Actions: UP, DOWN, RIGHT, LEFT

"Real" Problems

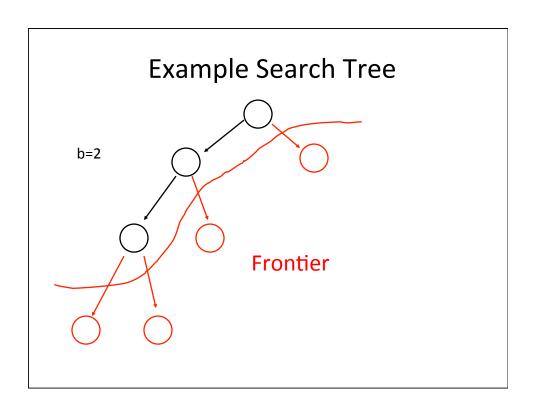
- Robot motion planning
- Drug design
- Logistics
 - Route planning
 - Tour Planning
- Assembly sequencing
- Internet routing

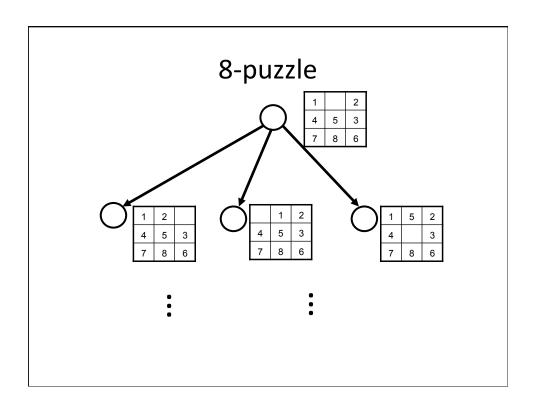
Why Use Search?

- Other algorithms exist for these problems:
 - Dijkstra's Algorithm
 - Dynamic programming
 - All-pairs shortest path
- Use search when it is too expensive to enumerate all states
- 8-puzzle has 362,800 states
- 15-puzzle has 1.3 trillion states
- 24-puzzle has 10²⁵ states

Basic Search Concepts

- Assume a tree-structured space (for now)
- Nodes: Places in search tree (states exist in the problem space)
- Search tree: portion of state space visited so far
- Actions: Connect states to next states
- Expansion: Generation of next states for a state
- Frontier: Set of states visited, but not expanded
- Branching factor: Max no. of successors = b
- Goal depth: Depth of shallowest goal = d





Generic Search Algorithm

```
Function Tree-Search(problem, Queuing-Fn)
```

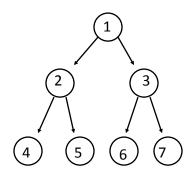
Interesting details are in the implementation of Add-To-Queue

Evaluating Search Algorithms

- Completeness:
 - Is the algorithm guaranteed to find a solution when there is one?
- Optimality:
 - Does the algorithm find the optimal solution?
- Time complexity
- Space complexity

Uninformed Search: BFS

Frontier is a FIFO

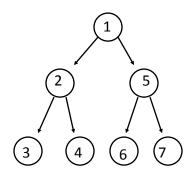


BFS Properties

- Completeness: Y
- Optimality: (Y for uniform cost, N for arbitrary cost)
- Time complexity: O(b^{d+1})
- Space complexity: O(bd+1)

Uninformed Search: DFS

Frontier is a LIFO



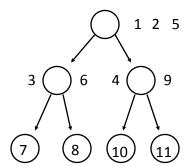
DFS Properties

- Completeness: (Y for finite trees, N for infinite trees)
- Optimality: N
- Time complexity: O(b^{m+1}) (m = depth we hit, m>d?)
- Space complexity: O(bm)

Iterative Deepening

- Want:
 - DFS memory requirements
 - BFS optimality, completeness
- Idea:
 - Do a depth-limited DFS for depth m
 - Iterate over m

IDDFS



IDDFS Properties

• Completeness: Y

• Optimality: (whenever BFS is optimal)

• Time complexity: O(bd+2)

• Space complexity: o(bd)

IDDFS vs. BFS

Theorem: IDDFS visits no more than twice as many nodes for a binary tree as BFS.

Proof: Assume the tree bottoms out at depth d, BFS visits:

$$2^{d+2}-1$$

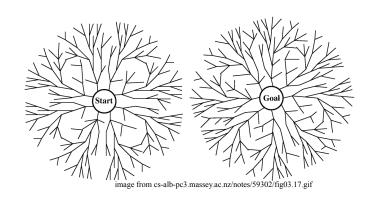
In the worst case, IDDFS does no more than:

$$\sum_{i=1}^{d} (2^{i+1} - 1) = \sum_{i=1}^{d} 2^{i+1} - \sum_{i=1}^{d} 1 = (2^{d+2} - 2) - d < 2(2^{d+1} - 1) < 2 \times BFS(d)$$

What about b-ary trees?

IDDFS relative cost is lower!

Bi-directional Search

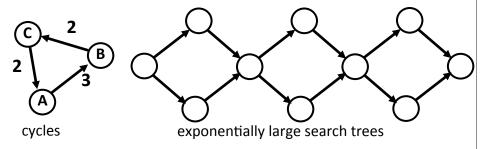


$$b^{d/2} + b^{d/2} << b^d$$

Issues with Bi-directional Search

- Uniqueness of goal
 - Suppose goal is parking your car
 - Huge no. of possible goal states (configurations of other vehicles)
- Invertability of actions

What About Repeated States (graphs)



- Can cause incompleteness or enormous runtimes
- Can maintain list of previously visited states to avoid this
 - If new path to the same state has greater cost, don't pursue it further
 - Leads to time/space tradeoff
- "Algorithms that forget their history are doomed to repeat it" [Russell and Norvig]

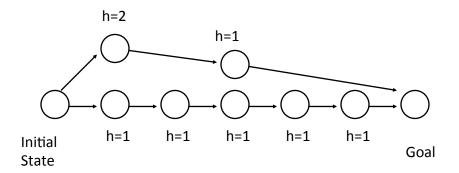
Informed Search

- Idea: Give the search algorithm hints
- Heuristic function: h(x)
- h(x) = estimate of cost to goal from x
- If h(x) is 100% accurate, then we can find the goal in O(bd) time

Greedy Search

- Expand node with lowest h(x)
- Optimal if h(x) is 100% correct
- How can we get into trouble with this?

What Price Greed?



What's broken with greedy search?

A*

- Path cost so far: g(x)
- Total cost estimate: f(x) = g(x) + h(x)
- Maintain frontier as a *priority queue* (on f)
- O(bd) time if h is 100% accurate
- We want h to be an admissible heuristic
- Admissible: never overestimates cost

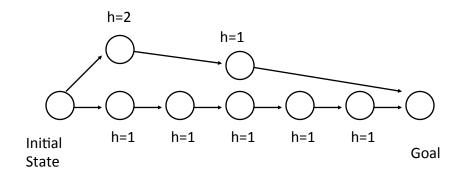
Some A* Properties

- Admissibility implies h(x)=0 if x is a goal state
- Above implies f(x)=cost to goal if x is a goal state and x is popped off the queue
- What if h(x)=0 for all x?
 - Is this admissible?
 - What does the algorithm do?

Optimality of A*

- If h is admissible, A* is optimal
- Proof (by contradiction):
 - Suppose a suboptimal solution node n with solution value f(n)
 C* is about to be expanded (where C* is optimal)
 - Let n* be a goal state found on optimal path
 - There must be some node n' that is currently in the fringe and on the path to n*
 - We have $f(n) > C^*$, and $f(n') = g(n') + h(n') \le C^*$
 - But then, n' should be expanded first (contradiction b/c we are using a priority queue prioritized on f)

Does A* fix the greedy problem?



A* is optimally efficient

- A* is optimally efficient: Any other optimal algorithm must expand at least the nodes A* expands (assuming both use the same, admissible h)
- Proof:
 - Besides solution, A* expands the nodes with g(n)+h(n) < C*
 - Assuming it does not expand non-solution nodes with g(n)+h(n) = C*
 - Any other optimal algorithm must expand at least these nodes (since there may be a better solution there)

Properties of Heuristics

- h2 dominates h1 if h2(x)>=h1(x) for all x
- (strict dominance if h2(x)>h1(x))
- Does this mean that h2 is better?
- Suppose you have multiple admissible heuristics. How do you combine them?

Designing heuristics

- One strategy for designing heuristics: relax the problem
- "Number of misplaced tiles" heuristic corresponds to relaxed problem where tiles can jump to any location, even if something else is already there
- "Sum of Manhattan distances" corresponds to relaxed problem where multiple tiles can occupy the same spot
- The ideal relaxed problem is
 - easy to solve computationally,
 - close in cost to the real problem
- Some programs can successfully automatically create heuristics