CPS 170 Alternative/Advanced Search Techniques

Ron Parr

With thanks to Vince Conitzer for LP,(M)IP examples.

Overview

- Memory-bounded Search
- Searching with Incomplete Information
- Local Search and Optimization

Memory-bounded Search: Why?

- We run out of memory before we run out of time
- Problem: Need to remember entire search horizon
- Solution: Remember only a partial search horizon
- Issue: Maintaining optimality, completeness
- Issue: How to minimize time penalty

Attempt 1: IDA*

- Iterative deepening A*
- Idea: Like IDDFS, but use the f cost as a cutoff
 - Cutoff all searches with f > 1, then f > 2, f > 3, etc.
 - Motivation: Cut off bad-looking branches early
- Problems:
 - Excessive node regeneration
 - Can still use a lot of memory

Cutoff =3

Attempt 2: RBFS

- Recursive best first search
- Objective: Linear space
- Idea: Remember best alternative
- Rewind, try alternatives if "best first" path gets too expensive
- Remember costs on the way back up

SMA*

- Idea: Use all of available memory
- Discard the *worst* leaf when memory starts to run out, to make room for new leaves
- Values get backed up to parents
- Optimal if solution fits in memory
- Complete

Searching with Partial Information

- Multiple state problems
 - Several possible initial states
- Contingency problems
 - Several possible outcomes for each action
- Exploration problems
 - Outcomes of actions not known a priori, must be discovered by trying them

Example

- Initial state may not be detectable
 - Suppose sensors for a nuclear reactor fail
 - Need safe shutdown sequence despite ignorance of some aspects of state
- This complicates search enormously
- In the worst case, contingent solution could cover the entire state space

State Sets

- Idea:
 - Maintain a set of candidate states
 - Each search node represents a set of states
 - Can be hard to manage if state sets get large
- If states have probabilistic outcomes, we maintain a probability distribution over states

Searching in Unknown Environments

- What if we don't know the consequences of actions before we try them?
- Often called on-line search
- Goal: Minimize competitive ratio
 - Actual distance/distance traveled if model known
 - Problematic if actions are irreversible
 - Problematic if links can have unbounded cost

Optimization

- Solution is more important than path
- Interested in minimizing or maximizing some function of the problem state
 - Find a protein with a desirable property
 - Optimize circuit layout
- History of search steps not worth the trouble

Hill Climbing

- Idea: Try to climb up the state space landscape to find a setting of the problem features with high value.
- Approaches:
 - Steepest ascent
 - Stochastic pick one of the good ones
 - First choice
- This is a *greedy* procedure

Limitations of Hill Climbing

- Local maxima
- Ridges direction of ascent is at 45 degree angle to any of the local changes
- Plateaux flat expanses

Getting Unstuck

- Random restarts
- Simulated annealing (minimization)
 - Take downhill moves with small probability
 - Probability of moving downhill decreases with
 - Number of iterations
 - Steepness of downhill move
 - If system is "cooled" slowly enough, will find global optimal w.p. 1
 - Motivated by the annealing of metals and glass

Genetic Algorithms

- GAs are hot in some circles
- Biological metaphors to motivate search
- Organism is a word from a finite alphabet (organisms = states)
- Fitness of organism measures its performance on task (fitness = objective)
- Uses multiple organisms (parallel search)
- Uses mutation (random steps)

Crossover

Crossover is a distinguishing feature of GAs:

Randomly select organisms for "reproduction" in accordance with their fitness. More "fit" individuals are more likely to reproduce.

Reproduction is sexual and involves crossover:

Organism 1: 110010010

Organism 2: 000101110

Offspring: 110011110*

Is this a good idea?

- Has worked well in some examples
- Can be very brittle
 - Representations must be carefully engineered
 - Sensitive to mutation rate
 - Sensitive to details of crossover mechanism
- For the same amount of work, stochastic variants of hill climbing often do better
- Hard to analyze; needs more rigorous study

Continuous Spaces

- In continuous spaces, we don't need to "probe" to find the values of local changes
- If we have a closed-form expression for our objective function, we can use the calculus
- Suppose objective function is: $f(x_1, y_1, x_2, y_2, x_3, y_3)$
- Gradient tells us direction and steepness of change

$$\nabla f = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3})$$

Following the Gradient

$$\mathbf{x} = (x_1, y_1, x_2, y_2, x_3, y_3)$$

$$\mathbf{x} \leftarrow \mathbf{x} + \alpha \nabla f(\mathbf{x})$$

For sufficiently small step sizes, this will converge to a local optimum.

If gradient is hard to compute:

- Compute empirical gradient
- · Compare with classical hill climbing

Constrained Optimization

- Don't forget about the easier cases
 - If you have a linear objective function with linear constraints, solve as a linear program:
 - Maximize (minimize): $f(\mathbf{x}) \leftarrow$ Linear function of vector \mathbf{x}
 - Subject to:

- Can be done in polynomial time
- Can solve some quadratic programs in poly time
- How is this search? Searches space of values of x.

Linear programs: example

• Make reproductions of 2 paintings

- Painting 1:
 - Sells for \$30
 - Requires 4 units of blue, 1 green, 1 red
- Painting 2
 - Sells for \$20
 - Requires 2 blue, 2 green, 1 red
- We have 16 units blue, 8 green, 5 red

maximize
$$3x + 2y$$

subject to
 $4x + 2y \le 16$

$$x + y \le 5$$

$$x \ge 0$$

Modified LP

Optimal solution: x = 2.5, y = 2.5

Solution value = 7.5 + 5 = 12.5

maximize
$$3x + 2y$$

subject to
 $4x + 2y \le 15$
 $x + 2y \le 8$
 $x + y \le 5$

 $x \ge 0$

y ≥ 0

Half paintings?

Integer (linear) program maximize 3x + 2ysubject to $4x + 2y \le 15$ $x + 2y \le 8$ $x + y \le 5$ $x \ge 0$, integer $y \ge 0$, integer $y \ge 0$, integer $y \ge 0$, integer

Solving linear/integer programs

- Linear programs can be solved efficiently
 - Simplex, ellipsoid, interior point methods...
 - Standard packages for solving these
 - GNU Linear Programming Kit, CPLEX, ...
- (Mixed) integer programs are intractable to solve
 - No known efficient (guaranteed run time less than exponential) algorithms
 - Solvers use standard search-like algorithms

Conclusions and Parting Thoughts

- There are search algorithms for almost every situation
- Many problems can be formulated as search
- While search is a very general method, it can sometimes outperform special-purpose methods