CPS 173

Computational problems, algorithms, runtime, hardness

(a ridiculously brief introduction to theoretical computer science)

Vincent Conitzer
Set Cover (a computational problem)

- We are given:
 - A finite set \(S = \{1, \ldots, n\} \)
 - A collection of subsets of \(S \): \(S_1, S_2, \ldots, S_m \)

- We are asked:
 - Find a subset \(T \) of \(\{1, \ldots, m\} \) such that \(\bigcup_{j \in T} S_j = S \)
 - Minimize \(|T| \)

- Decision variant of the problem:
 - we are additionally given a target size \(k \), and
 - asked whether a \(T \) of size at most \(k \) will suffice

- One instance of the set cover problem:
 \(S = \{1, \ldots, 6\} \), \(S_1 = \{1,2,4\} \), \(S_2 = \{3,4,5\} \), \(S_3 = \{1,3,6\} \), \(S_4 = \{2,3,5\} \), \(S_5 = \{4,5,6\} \), \(S_6 = \{1,3\} \)
Visualizing Set Cover

- $S = \{1, \ldots, 6\}$, $S_1 = \{1,2,4\}$, $S_2 = \{3,4,5\}$, $S_3 = \{1,3,6\}$, $S_4 = \{2,3,5\}$, $S_5 = \{4,5,6\}$, $S_6 = \{1,3\}$
Using glpsol to solve set cover instances

- How do we model set cover as an integer program?
- See examples
Algorithms and runtime

• We saw:
 – the runtime of glpsol on set cover instances increases rapidly as the instances’ sizes increase
 – if we drop the integrality constraint, can scale to larger instances

• Questions:
 – Using glpsol on our integer program formulation is but one algorithm – maybe other algorithms are faster?
 • different formulation; different optimization package (e.g., CPLEX); simply going through all the combinations one by one; …
 – What is “fast enough”?
 – Do (mixed) integer programs always take more time to solve than linear programs?
 – Do set cover instances fundamentally take a long time to solve?
A simpler problem: sorting (see associated spreadsheet)

- Given a list of numbers, sort them

- **(Really) dumb algorithm:** Randomly perturb the numbers. See if they happen to be ordered. If not, randomly perturb the whole list again, etc.

- **Reasonably smart algorithm:** Find the smallest number. List it first. Continue on to the next number, etc.

- **Smart algorithm (MergeSort):**
 - It is easy to merge two lists of numbers, each of which is already sorted, into a single sorted list
 - So: divide the list into two equal parts, sort each part with some method, then merge the two sorted lists into a single sorted list
 - … actually, to sort each of the parts, we can again use MergeSort! (The algorithm “calls itself” as a subroutine. This idea is called recursion.) Etc.
Polynomial time

• Let \(|x|\) be the size of problem instance \(x\) (e.g., the size of the file in the .lp language)
• Let \(a\) be an algorithm for the problem
• Suppose that for any \(x\), runtime(\(a,x\)) < \(cf(|x|)\) for some constant \(c\) and function \(f\)
 Then we say algorithm \(a\)’s runtime is \(O(f(|x|))\)
• \(a\) is a polynomial-time algorithm if it is \(O(f(|x|))\) for some polynomial function \(f\)
• \(P\) is the class of all problems that have at least one polynomial-time algorithm
• Many people consider an algorithm efficient if and only if it is polynomial-time
Two algorithms for a problem

Algorithm 1 is $O(n^2)$
(a polynomial-time algorithm)

Algorithm 2 is not $O(n^k)$
for any constant k
(not a polynomial-time algorithm)

The problem is in P
Linear programming and (mixed) integer programming

• LP and (M)IP are also computational problems
• LP is in P
 – Ironically, the most commonly used LP algorithms are not polynomial-time (but “usually” polynomial time)
• (M)IP is not known to be in P
 – Most people consider this unlikely
Reductions

• Sometimes you can reformulate problem A in terms of problem B (i.e., reduce A to B)
 – E.g., we have seen how to formulate several problems as linear programs or integer programs

• In this case problem A is at most as hard as problem B
 – Since LP is in P, all problems that we can formulate using LP are in P
 – Caveat: only true if the linear program itself can be created in polynomial time!
NP (“nondeterministic polynomial time”)

• Recall: decision problems require a yes or no answer

• NP: the class of all decision problems such that if the answer is yes, there is a simple proof of that

• E.g., “does there exist a set cover of size k?”

• If yes, then just show which subsets to choose!

• Technically:
 – The proof must have polynomial length
 – The correctness of the proof must be verifiable in polynomial time
P vs. NP

• **Open problem**: is it true that P=NP?
• The most important open problem in theoretical computer science (maybe in mathematics?)
• $1,000,000 Clay Mathematics Institute Prize
• Most people believe P is not NP
• If P were equal to NP…
 – Current cryptographic techniques can be broken in polynomial time
 – Computers may be able to solve many difficult mathematical problems…
 • … including, maybe, some other Clay Mathematics Institute Prizes! 😊
NP-hardness

• A problem is **NP-hard** if the following is true:
 – Suppose that it is in P
 – Then P=NP

• So, trying to find a polynomial-time algorithm for it is like trying to prove P=NP

• Set cover is NP-hard

• Typical way to prove problem Q is NP-hard:
 – Take a known NP-hard problem Q’
 – Reduce it to your problem Q
 • (in polynomial time)

• E.g., (M)IP is NP-hard, because we have already reduced set cover to it
 – (M)IP is more general than set cover, so it can’t be easier

• A problem is **NP-complete** if it is 1) in NP, and 2) NP-hard
Reductions:

To show problem Q is easy:

Q \rightarrow \text{Problem known to be easy (e.g., LP)} \quad \text{reduce}

To show problem Q is (NP-)hard:

\text{Problem known to be (NP-)hard (e.g., set cover, (M)IP)} \rightarrow Q \quad \text{reduce}

ABSOLUTELY NOT A PROOF OF NP-HARDNESS:

Q \rightarrow \text{MIP} \quad \text{reduce}
Independent Set

• In the below graph, does there exist a subset of vertices, of size 4, such that there is no edge between members of the subset?

• General problem (decision variant): given a graph and a number k, are there k vertices with no edges between them?
• NP-complete
Reducing independent set to set cover

• In set cover instance (decision variant),
 – let $S = \{1,2,3,4,5,6,7,8,9\}$ (set of edges),
 – for each vertex let there be a subset with the vertex’s adjacent edges: \{1,4\}, \{1,2,5\}, \{2,3\}, \{4,6,7\}, \{3,6,8,9\}, \{9\}, \{5,7,8\}
 – target size = \#vertices - k = 7 - 4 = 3
• Claim: answer to both instances is the same (why??)
• So which of the two problems is harder?
Weighted bipartite matching

- Match each node on the left with one node on the right (can only use each node once)
- Minimize total cost (weights on the chosen edges)
Weighted bipartite matching…

- minimize $c_{ij} x_{ij}$
- subject to
- for every i, $\sum_j x_{ij} = 1$
- for every j, $\sum_i x_{ij} = 1$
- for every i, j, $x_{ij} \geq 0$

- Theorem [Birkhoff-von Neumann]: this linear program always has an optimal solution consisting of just integers
 - and typical LP solving algorithms will return such a solution

- So weighted bipartite matching is in P