Question 1 [20 points] There is a network of roads $G = (V, E)$ connecting a set of cities V. Each road in E has an associated length l_e. There is a proposal to add one new road to this network, and there is a list E' of pairs of cities between which the new road can be built. Each such potential road $e' \in E'$ has an associated length. As a designer for the public works department you are asked to determine the road $e' \in E'$ whose addition to the existing network G would result in the maximum decrease in the driving distance between two fixed cities s and t in the network. Give an efficient algorithm for solving this problem.

Question 2 [20 points] Often there are multiple shortest paths between two nodes of a graph. Give a linear-time algorithm for the following task.
Input: Undirected graph $G = (V, E)$ with unit edge lengths; nodes $u, v \in V$.
Output: The number of distinct shortest paths from u to v.

Question 3 [20 points] You are given a directed graph $G(V, E)$. Each edge $e \in E$ is associated with two lengths $l_1(e)$ and $l_2(e)$, which are non-negative integers in the range $\{0, 1, \ldots, M\}$. Given two vertices $s, t \in V$ and two length bounds A and B, give an efficient algorithm to decide if there is a path from s to t whose length according to the function l_1 is at most A and whose length according to the function l_2 is at most B. What is the running time of your algorithm?

Question 4 [20 points] There are many common variations of the maximum flow problem. Here are two of them.
(a) There are many sources and many sinks, and we wish to maximize the total flow from all sources to all sinks.
(b) Each vertex also has a capacity on the maximum flow that can enter it.
Both of these can be solved efficiently. Show this by reducing (a) and (b) to the original max-flow problem.

Question 5 [20 points] Shortest path algorithms can be applied in currency trading. Let c_1, c_2, \ldots, c_n be various currencies, for instance, c_1 might be dollars, c_2 pounds, and c_3 lire. For any two currencies c_i and c_j, there is an exchange rate r_{ij}, this means that you can purchase r_{ij} units of currency c_j in exchange for one unit of c_i. These exchange rates satisfy the condition that $r_{ij} \times r_{ji} < 1$, so that if you start with a unit of currency c_i, change it into currency c_j and then convert back to currency c_i, you end up with less than one unit of currency c_i (the difference is the cost of the transaction).
(a) Give an efficient algorithm for the following problem: Given a set of exchange rates r_{ij}, and two currencies s and t, find the most advantageous sequence of currency exchanges for converting currency s into currency t. Toward this goal, you should represent the currencies
and rates by a graph whose edge lengths are real numbers. The exchange rates are updated frequently, reflecting the demand and supply of the various currencies. Occasionally the exchange rates satisfy the following property: there is a sequence of currencies $c_{i_1}, c_{i_2}, \ldots, c_{i_k}$ such that $r_{i_1,i_2} \times r_{i_2,i_3} \times \cdots \times r_{i_{k-1},i_k} \times r_{i_k,i_1} > 1$. This means that by starting with a unit of currency c_{i_1} and then successively converting it to currencies $c_{i_2}, c_{i_3}, \ldots, c_{i_k}$, and finally back to c_{i_1}, you would end up with more than one unit of currency c_{i_1}. Such anomalies last only a fraction of a minute on the currency exchange, but they provide an opportunity for risk-free profits.

(b) Give an efficient algorithm for detecting the presence of such an anomaly. Use the graph representation you found above.