Due Date: January 31, 2013

Problem 1: In each of the following cases, rank the functions by order of their growth. Here log \(n \) means \(\log_2 n \).

- \(2^{\log n}, (\log n)^{\log n}, e^n, 4^{\sqrt{\log n}}, n!, \sqrt{\log n} \)
- \((\frac{3}{2})^n, n^2, (\log n)^2, \log(n!), 2^{2n}, n^{\frac{1}{\log n}}, n^{\frac{1}{\log \log n}} \).

Problem 2: Show that, if \(c \) is a positive real number, then \(g(n) = 1 + c + c^2 + c^3 + \cdots + c^n \) is:

- \(\Theta(1) \) if \(c < 1 \)
- \(\Theta(n) \) if \(c = 1 \)
- \(\Theta(c^n) \) if \(c > 1 \)

Problem 3: Solve the following recurrences by expanding the terms or using induction and give a \(\Theta \) bound for each of them. If you use induction, you can use the master theorem to guess the bound. In all the cases, assume \(T(k) = O(1) \) if \(k \) is a constant.

- \(T(n) = 5T(n/4) + n \)
- \(T(n) = T(\sqrt{n}) + 1 \)
- \(T(n) = T(n - 1) + n^c \)

Problem 4: Give an efficient algorithm to compute the least common multiple of two \(n \)-bit numbers \(x \) and \(y \), that is, the smallest number divisible by both \(x \) and \(y \). What is the running time of your algorithm as a function of \(n \)?

Problem 5: The \(k \)th quantiles of an \(n \)-element set are the \(k - 1 \) order statistics that divide the sorted set into \(k \) equal-sized sets (to within 1). That is, compute the elements of rank \(\lceil in/k \rceil \) for all \(1 \leq i < k \). Give an \(O(n \log k) \)-time algorithm to list the \(k \)th quantiles of a set.