Assignment 1
Course: COMPSCI 590-4

Due Date: January 31, 2013

Problem 1: In each of the following cases, rank the functions by order of their growth. Here \(\log n \) means \(\log_2 n \).

- \(2^{\log n}, (\log n)^{\log n}, e^n, 4^{\sqrt{\log n}}, n!, \sqrt{\log n} \)
- \((\frac{3}{2})^n, n^3, (\log n)^2, \log(n!), 2^{2^n}, n^{\log n}, n^{\log \log n} \)

Problem 2: Solve the following recurrences using induction and give a \(\Theta \) bound for each of them and explain why.

- \(T(n) = 2T(n/2 + 5) + n \)
- \(T(n) = 2T(n/2) + \frac{n}{\log n} \)
- \(T(n) = \sqrt{n}T(\sqrt{n}) + n \)

Problem 3: Give an efficient algorithm to compute the least common multiple of two \(n \)-bit numbers \(x \) and \(y \), that is, the smallest number divisible by both \(x \) and \(y \). What is the running time of your algorithm as a function of \(n \)?

Problem 4: [Monge Arrays] An \(m \times n \) array \(A \) of real numbers is a Monge array if for all \(i, j, k, \) and \(\ell \) such that \(1 \leq i < k \leq m \) and \(1 \leq j < \ell \leq n \), we have

\[
\]

In other words, whenever we pick two rows and two columns of a Monge array and consider the four elements at the intersections of the rows and the columns, the sum of the upper-left and lower-right elements is less than or equal to the sum of the lower-left and upper-right elements.

(i) Here is a description of a divide-and-conquer algorithm that computes the leftmost minimum element in each row of an \(m \times n \) Monge array \(A \):

Construct a submatrix \(A' \) of \(A \) consisting of the even-numbered rows of \(A \). Recursively determine the leftmost minimum for each row of \(A' \). Then compute the leftmost minimum in the odd-numbered rows of \(A \).

Explain how to compute the leftmost minimum in the odd-numbered rows of \(A \) (given that the leftmost minimum of the even-numbered rows is known) in \(O(m + n) \) time.

(ii) Write the recurrence describing the running time of the algorithm described above. Show that its solution is \(O(m + n \log m) \).
Problem 5: Suppose we are given an array $A[1..n]$ with the special property that $A[1] \geq A[2]$ and $A[n-1] \leq A[n]$. We say that an element $A[x]$ is a local minimum if it is less than or equal to both its neighbors, or more formally, if $A[x-1] \geq A[x]$ and $A[x] \leq A[x+1]$. For example, there are six local minima in the following array:

```
9 7 7 2 1 3 7 5 4 7 3 3 4 8 6 9
```

We can obviously find a local minimum in $O(n)$ time by scanning through the array. Describe and analyze an algorithm that finds a local minimum in $O(\log n)$ time. [Hint: With the given boundary conditions, the array must have at least one local minimum. Why?]