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Abstract: A major goal in computational biology is to
develop models that accurately predict a gene’s expres-
sion from its surrounding regulatory DNA. Here we
present one class of such models, thermodynamic state
ensemble models. We describe the biochemical derivation
of the thermodynamic framework in simple terms, and lay
out the mathematical components that comprise each
model. These components include (1) the possible states
of a promoter, where a state is defined as a particular
arrangement of transcription factors bound to a DNA
promoter, (2) the binding constants that describe the
affinity of the protein–protein and protein–DNA interac-
tions that occur in each state, and (3) whether each state
is capable of transcribing. Using these components, we
demonstrate how to compute a cis-regulatory function
that encodes the probability of a promoter being active.
Our intention is to provide enough detail so that readers
with little background in thermodynamics can compose
their own cis-regulatory functions. To facilitate this goal,
we also describe a matrix form of the model that can be
easily coded in any programming language. This formal-
ism has great flexibility, which we show by illustrating
how phenomena such as competition between transcrip-
tion factors and cooperativity are readily incorporated
into these models. Using this framework, we also
demonstrate that Michaelis-like functions, another class
of cis-regulatory models, are a subset of the thermody-
namic framework with specific assumptions. By recasting
Michaelis-like functions as thermodynamic functions, we
emphasize the relationship between these models and
delineate the specific circumstances representable by
each approach. Application of thermodynamic state
ensemble models is likely to be an important tool in
unraveling the physical basis of combinatorial cis-regula-
tion and in generating formalisms that accurately predict
gene expression from DNA sequence.

Introduction

Modern molecular biology and genomics methods allow

investigators to readily assay protein and mRNA expression levels

and identify interactions between proteins, RNA, and other

cellular components. Leveraging these data to understand the

functional significance of interactions on gene expression is a key

challenge in computational biology. The recent application of

thermodynamic models to gene regulation is an exciting

development, as each model reflects a specific, testable hypothesis

regarding the physical architecture of the underlying molecular

system [1–4]. Such models will help transform parts lists, which

describe the components of regulatory systems, into models that

integrate the interactions between components into accurate

predictions of gene expression.

Though a gene is regulated at every step of transcription and

translation, a large component of regulation operates at the level of

the promoter [5]. Transcription factors bind to specific sequences

and modulate transcription by influencing exposure of the

polymerase binding site (chromatin remodelers [6]), chemically

modifying DNA (methyltransferases [7]), and recruiting factors

necessary for, or inhibitory of, polymerase complex formation [8–

11]. These mechanisms constitute the cis-regulatory component of

a gene’s regulation. Understanding gene expression under a

variety of cellular contexts requires a well-grounded theory for

modeling cis-regulatory function.

Here we show the biochemical derivation of the thermodynamic

framework used to model promoter activity. The derivation is

presented in a form that can be readily coded in any programming

language, allowing readers to develop cis-regulatory models

specific to their own systems. We suggest how this approach can

be leveraged to model virtually any cis-regulatory mechanism. We

also demonstrate that modular Michaelis-like functions, another

commonly used framework, are a specific subset of the

thermodynamic model framework. To demonstrate this, we recast

Michaelis-like functions as thermodynamic models, highlighting

the physical assumptions necessary for interconversion. Viewing

Michaelis functions in this form reinforces the principles of the

thermodynamic framework, emphasizes the relationship between

these approaches, and provides criteria for an investigator to

choose an appropriate cis-regulatory model. The flexibility of the

thermodynamic framework, along with its grounding in basic

physical principles, makes it a powerful tool for unraveling the

molecular interactions that underlie combinatorial cis-regulation.

cis-Regulatory Functions in Models of
Transcription

A model of cis-regulation relates the activities of various

transcription factors acting on gene M to the concentration of

mRNA produced by transcription of M. To illustrate how cis-

regulation contributes to expression, a general model of transcrip-
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tion, derived from physicochemical principles, is presented [12].

The concentration of any particular mRNA species, denoted as

½m�, changes over time according to the first order rate equation

(Equation 1),

d½m�
dt

~ wmkt|ffl{zffl}
Production

{ dm½m�|fflffl{zfflffl}
Degradation

ð1Þ

where dm is the degradation rate constant of the RNA transcript in

units of inverse time, kt is the concentration of RNA transcripts

generated per unit time when RNA polymerase is committed to

transcription, and wm is the probability that a DNA template is

committed to transcription. The quantity wm is the cis-regulatory

term. The wm function integrates elements of the cellular milieu

that affect transcription and outputs the probability that a single

DNA molecule is committed to transcription. In a clonal

population of cells at equilibrium, wm equals the fraction of those

cells currently committed to transcription. Although there are

numerous other discrete, continuous, and stochastic models of

gene expression [12,13], every model must contain some form of

the cis-regulatory function wm.

Anatomy of a cis-Regulatory Function

Importantly, there is no hypothesis-independent form of the cis-

regulatory function; any choice of wm is a hypothesis about the

mechanism of gene M’s transcription. Even if we choose wm to be

a constant, we imply that gene M is constitutively transcribed at a

rate unaffected by any cellular or environmental factors. There is

no single correct formulation of wm; investigators must formulate

wm based on aspects of their system they know to be true, and on

hypotheses they hold regarding the important features of their

system.

Two approaches have been used to formulate cis-regulatory wm

expressions: (1) Michaelis-like functions and (2) thermodynamic

state ensemble models. Michaelis-like functions have been most

frequently employed to study large gene regulatory networks

[12,14–18], owing to their modular design and limited number of

free parameters. State ensemble approaches have been the model

of choice for characterizing a few specific genes in great detail [1–

3,19–23]. By manipulating these two approaches analytically, we

will show that the Michaelis-like models are a specific case in the

thermodynamic framework, thus uniting these two approaches

and also illuminating some of the subtleties of the Michaelis-like

models.

Thermodynamic State Ensemble Approach
The ‘‘thermodynamic model’’ is a framework for constructing a

set of states that collectively encode the rules of transcription for a

particular promoter. Each state represents a particular number

and arrangement of transcription factors bound to a DNA

template. Some states are transcriptionally active while others

remain transcriptionally dormant. All states occur at some point,

but their contributions to transcription are weighted by their

relative stabilities. In this formulation, wm is the probability of a

promoter being in a transcriptionally active state. The essence of

the thermodynamic framework is to compute the ratio of

transcriptionally active promoter states to the sum of all states,

active and inert. This ratio depends on variables including the

exact cis-regulatory sequences present in the promoter, the

concentrations of proteins that bind these sequences, and the

affinities of the protein–DNA and protein–protein interactions

that occur on the DNA. The thermodynamic formalism provides a

flexible framework in which to account for molecular interactions

that control cis-regulation.

Generating a model requires writing down all possible states a

promoter may adopt in the form of a binding polynomial, P

[2,24]. To illustrate the binding polynomial, we first consider the

simple case of a basal promoter (Figure 1). Defining what is meant

by basal transcription is central to the development of a model

framework because activation and repression reflect changes

relative to the basal level of transcription. Here, a basal promoter

is a DNA template that contains a binding site for RNA

polymerase (RNAP) and no other cis-regulatory sequences. Basal

transcription is defined as the level of transcript produced by

RNAP in the absence of regulation by transcription factors. Note

that RNAP serves as a proxy for the rate limiting step of

transcription, whether that be the recruitment of a particular co-

factor to the RNAP holoenzyme, or binding of a specific

transcription factor. The binding polynomial for the basal

promoter is given in Equation 2. For reference, Box 1 contains

definitions relevant for the derivation.

P~½DNA�z½DNA:RNAP� ð2Þ

This DNA-centric binding polynomial enumerates the two

mutually exclusive states of a basal promoter; either DNA is free or

bound by RNAP. From P, we can determine the fraction of DNA

bound with RNAP, vRNAPw. At equilibrium, this is the

concentration of bound DNA divided by the total concentration of

DNA, P (Equation 3).

vRNAPw~
½DNA:RNAP�

½DNA�z½DNA:RNAP�~
½DNA:RNAP�

P
ð3Þ

Equation 3 is a basic cis-regulatory function (wm) for a basal

promoter where concentration of bound polymerase is the only

determinant of transcription. The primary assumption of the

thermodynamic model, originally introduced by Shea and Ackers

[2], is that binding of the polymerase complex is the key event

leading to production of a transcript, and that other proteins

affecting expression operate by recruiting or inhibiting the

polymerase complex. Thus, the fraction of polymerase complex

bound is directly proportional to the number of transcripts

produced.

We can reformulate Equation 3 in terms of its component free

species and their association constants. The apparent association

constant for the binding of RNAP to DNA is KP.

Figure 1. States of a basal promoter. A basal promoter is
composed of two states, one where DNA is bound with RNAP and is
transcriptionally active, and another where DNA is free and inactive.
doi:10.1371/journal.pcbi.1002407.g001
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KP~
½DNA:RNAP�
½DNA�½RNAP� ð4Þ

This simplification presumes that the concentrations of all

cofactors required to form the RNAP complex are invariant.

Solving for ½DNA:RNAP� in Equation 4 and substituting it into

Equation 3 results in Equation 5. The [DNA] factor is present in

all terms and is subsequently dropped.

vRNAPw~
KP½DNA�½RNAP�

½DNA�zKP½DNA�½RNAP�~
KP½RNAP�

1zKP½RNAP� ð5Þ

The denominator of the right-hand-side of Equation 5 is called

the biochemical partition function (Z) for our system, and is

exactly equal to P=½DNA�. Dividing any state or sum of states s
listed in Z by Z results in the probability of observing s. The

reference state, where DNA is unbound, is represented by the 1 in

Z; consequently, the probability of finding DNA unbound is 1=Z.

Equation 5 is perhaps the most intuitive form of the thermody-

namic model as it shows clearly the origin of each state. Each state

is a summand, and the elements within a summand serve as a sort

of recipe for how to make that state. For example, the numerator

term in Equation 5 can be read as ‘‘binding of RNAP to DNA has

an equilibrium binding constant of KP’’. This form is particularly

useful because it expresses the model in terms that are more

accessible to experiment. While in vivo binding constants and

concentrations of free species are difficult to determine, reasonable

proxies for these quantities can often be obtained experimentally

[20,25].

Several other manipulations of these equations are employed in

the literature. In addition to writing states in terms of free species

concentrations, Shea and Ackers substitute association constants

with Boltzmann weights [2]. Others course-grain the product of

association constants and concentrations into single parameters

[1,20], reducing computational complexity. These manipulations

to the free species form described above are discussed in the

supplement (Text S1, Alternate cis-Regulatory Function Forms).

Building a Thermodynamic State Ensemble Model
The framework suggested by Shea and Ackers allows great

flexibility for assembling models to reflect a wide variety of

mechanisms and behavior.

For any particular system, construction of a thermodynamic cis-

regulatory function requires three components: (1) a list of all

states, (2) the macroscopic equilibrium constant for each state, and

(3) a boolean for whether each state is capable of transcribing or

not. We will illustrate the formalism using a promoter with a single

binding site for a transcription factor and a binding site for RNA

polymerase (Figure 2). We have introduced linear algebra to

showcase the building blocks of the framework while demonstrat-

ing how to code a specific model. We will encode the list of states

in a position matrix L, which we will then convert into the

functional state vector s.

TF BindingSite RNAP BindingSite

L~

State1

State2

State3

State4

1 1

1 ½RNAP�

½TF� 1

½TF� ½RNAP�

0
BBBBB@

1
CCCCCA

States are written as a function of position with concentrations

representing what can bind each position in each state. A ‘‘1’’

denotes nothing is bound in that particular position and state. The

product of all terms in each state are used to generate the state

vector s. Unique states in L may result in degenerate states in s.

Box 1. Definitions

Basal promoter: a promoter in which the sequence
codes only for binding of RNA Polymerase.
Basal transcription: the RNA expression level attained
by driving a gene with a basal promoter.
Binding polynomial: a mathematical expression calcu-
lated by summing the concencentrations of all states of a
particular macromolecule (in this case, DNA).
cis-regulatory site: a specific sequence recognized and
capable of being bound by a transcription factor or
polymerase.
Cooperativity: a binding modality in which the occupan-
cy of a state where two or more factors are bound to DNA is
not equal to the occupancy expected if each factor were to
bind independently. In terms of energy, which is additive: if
factors A and B bind independently, then the energy of the
state where both are bound is DGAB~DGAzDGB. If the
actual energy, DG�AB, is not equal to DGAB, then there exists
some interaction between A and B such that DG�AB~
DGAzDGBzDGcAB, where DGcAB is the cooperative
energy term of this interaction. DGcABw0 reflects positive
cooperativity, or an adhesive interaction between A and B,
while DGcABv0 indicates negative cooperativity, or a
repulsive interaction between A and B.
Equilibrium: when either the time average or population
average of all relevant concentrations of biochemical
species are not changing.
Equilibrium binding constant: in an interaction be-
tween biochemical species, the equilibrium binding
constant is the equilibrium concentration of the product
divided by the product of the equilibrium concentrations
of all reactants. In a cellular equilibrium, as defined above,
these are actually ‘‘apparent’’ equilibrium constants.
Macroscopic binding constant: an analog to the total
energy required to bind all species in a state from an
unbound state. If only two species are interacting, the
macroscopic binding constant equals the equilibrium
binding constant. In all other situations, the macroscopic
binding constant is equal to the product of all equilbrium
binding constants neccesary to convert two or more
species from the free to bound state.
Partition function: the binding polynomial normalized
by the concentration of a reference state (in this case, free
DNA, [DNA]). The probability of observing a particular state
may be calculated by dividing a state contained in the
partition function by the total partition function.
Promoter: the sequence adjacent to the coding region of
a gene containing RNA polymerase binding sequence and
any other cis-regulatory binding sequences.
RNA polymerase (RNAP): the biochemical machinery
needed for basal expression. In the context of an
experiment it can also be thought of as the aspect of
the experiment not being altered.
State: a specific arrangement of transcription factors and/
or RNAP bound to DNA.
Transcription factor (TF): any protein capable of both
binding a promoter and affecting expression by influenc-
ing the polymerase’s ability to bind DNA and/or transcribe.

PLoS Computational Biology | www.ploscompbiol.org 3 March 2012 | Volume 8 | Issue 3 | e1002407



This example with two sites requires two columns; other, more

complicated systems with multiple sites are modeled by adding

new columns.

s~

1

½RNAP�
½TF�

½TF�½RNAP�

0
BBB@

1
CCCA

State 1, the first row of s, corresponds to the reference state where

DNA has nothing bound. State 2 has RNAP bound by itself, state

3 has TF bound by itself, and state 4 has both TF and RNAP

bound. Simply by writing these states we are already specifying the

architecture of our system. For example, if RNAP were to require

TF to be present before it binds, then state 2, where RNAP is

bound by itself, would not exist and would not be included among

the list of possible states.

Vector b contains the macroscopic equilibrium constants bi for

each state i; as such, it will be the same length as s. Macroscopic

equilibrium constants reflect the energy difference between that

state and the reference (unbound) state, and comprise the product

of the stepwise equilibrium constants in the intervening steps.

b~

b1

b2

b3

b4

0
BBB@

1
CCCA

The macroscopic binding constant for the reference state is always

1, representing free [DNA]; thus, b1~1 (see Equation 5).

Lastly, we define vector t, which contains boolean values for

whether a state is capable of transcribing. For example, we might

assume that transcription occurs any time RNAP is bound, as

assumed by Shea et al. [2]. Changes in the values of the t vector

can accommodate situations where this assumption proves to be

false.

t~

0

1

0

1

0
BBB@

1
CCCA

The cis-regulatory function wm is the sum of states capable of

transcribing divided by the sum of all possible states. The

denominator of wm is the biochemical partition function Z, which

can be expressed as the dot product of the transpose of s with b.

Taking the pairwise element product of b and t results in vector bt.

bt~b|t~

b1
:0

b2
:1

b3
:0

b4
:1

0
BBB@

1
CCCA~

0

b2

0

b4

0
BBB@

1
CCCA

Then the dot product of the transpose of s with bt yields the sum

of transcriptionally active states.

Generally, for any architecture L written as a vector s that

contains the concentrations of all relevant species, vector b
containing the macroscopic equilibrium constants for each state,

and vector t relating whether a state is capable of transcribing, the

cis-regulatory function is:

wm~
sT :bt

sT :b
ð6Þ

Figure 2. Thermodynamic state ensemble model example. (A) Four states are allowed in this example, two where transcription is inactive
(states 1 and 3) and two states where transcription is active (states 2 and 4). (B) The wm function is composed of the concentrations of transcriptionally
active states summed in the numerator divided by the sum of the concentrations of all possible states.
doi:10.1371/journal.pcbi.1002407.g002
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For our example,

wm~
sT :bt

sT :b
~

b2½RNAP�zb4½TF �½RNAP�
1zb2½RNAP�zb3½TF �zb4½TF �½RNAP� ð7Þ

The b terms reflect the most general treatment of this system,

but can also be written as functions of their stepwise equilibrium

constants. In the scenario above, the macroscopic equilibrium

constant b2 is exactly equal to the equilibrium constant for binding

of RNAP to DNA, denoted as KP. Similarly, b3 is exactly equal to

the equilibrium constant for association of TF to DNA, denoted as

KA. b4 can be a number of different expressions depending on the

system. For example, setting b4~KAKP implies completely

independent non-cooperative binding of TF and polymerase; that

is, binding of one does not influence binding of the other. In this

case,

wm~
KP½RNAP�zKPKA½TF �½RNAP�

1zKP½RNAP�zKA½TF �zKPKA½TF �½RNAP� ð8Þ

Completely independent binding of transcription factor and

RNAP implies that the presence of TF has no bearing on the

probability of RNAP being bound, a scenario reflected in the

equation by factoring and canceling out the TF terms, revealing

our basal promoter function:

wm~
KP½RNAP�(1zKA½TF �)

(1zKP½RNAP�)(1zKA½TF �) ~
KP½RNAP�

1zKP½RNAP� : ð9Þ

In order for the TF to affect binding of the polymerase we must

introduce a cooperative binding term cA. Then b2~KP and

b3~KA as before, but b4~KAKPcA. The new wm no longer

simplifies to the trivial case.

wm~
KP½RNAP�zKPKAcA½TF �½RNAP�

1zKP½RNAP�zKA½TF �zKPKAcA½TF �½RNAP� ð10Þ

The cooperative term cA reflects the energy associated with the

interaction of the polymerase with the TF. If cA = 1, we recover

the case above where binding of the TF has no bearing on the

binding of the polymerase. If cAw1, the TF acts like an activator;

if the TF is bound, it stabilizes the state where polymerase is also

bound. Conversely, if cAv1, the TF acts like a repressor; TF

binding decreases the stability of the state where polymerase is also

bound. See Box 2 for additional examples.

When constructing a thermodynamic model, an investigator

explicitly selects the number of binding sites, decides which

proteins bind to each site, determines whether a state is

transcriptionally active, and assigns cooperative interactions

between binding partners. The resulting cis-regulatory function’s

numerator contains transcriptionally active states while the

denominator encodes all binding states. These traits confer

considerable versatility to the thermodynamic modeling approach,

making it a powerful tool for exploring cis-regulatory control of

gene expression.

Modular Michaelis Functions
Modular Michaelis-like functions have also been used to model

cis-regulation. Ronen et al. introduced activator and repressor

equations (Equations 11 and 12) as Michaelis-Menten kinetic

equations to model transcription temporally [26]. Various groups

[12,14–18] subsequently used these equations as cis-regulatory

input functions because increases in activator concentration ([A])

or activator efficiency (hA) monotonically heighten expression

(Equation 11), while increases in repressor concentration ([R]) or

efficiency (hR) monotonically diminish expression (Equation 12).

However, these equations are not derived from the classical

Michaelis-Menten enzyme-substrate system and bear no relation

other than mathematical form, hence our use of the term

‘‘Michaelis-like.’’ wm, the cis-regulatory function, is formulated as

the product of m activator (Ai) and n repressor (Rj ) functions

(Equation 13),

Ai~
hAi
½Ai�

1zhAi
½Ai�

ð11Þ

Rj~
1

1zhRj
½Rj �

ð12Þ

Figure 3. Graphical representations of thermodynamic cis-regulatory functions. Proteins/complexes are represented as ovals, binding sites
as rectangles. (A) Repressor-RNAP competition with activator release model, see Box 2. The ovals represent RNAP (blue), repressor (red), and activator
(green). Note that the repressor and RNAP binding sites are overlapping to reflect competition between sites. (B) Sequential binding model, see Box
2. The ovals correspond to RNAP (blue), activator A1 (dark green), and activator A2 (light green).
doi:10.1371/journal.pcbi.1002407.g003
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wm~( P
m

i~1
Ai P

n

j~1
Rj) ð13Þ

where hA and hR were originally defined as apparent affinities of

activator and repressor for their promoter sites [14,26], but later

interpreted as efficiencies of activation or repression [15].

Importantly, this Michaelis-like formulation necessarily results

in an AND-type circuit where expression occurs only if ALL

activator factors are bound AND ALL repressors are NOT

bound to DNA [12].

One subtlety of the Michaelis-like models is that there is no

uniform definition of the basal rate. To illustrate this, consider two

promoters, one with a single binding site for an activator and the

other with a single site for a repressor. The corresponding models

are given in Equations 14 and 15:

wm~
hA½A�

1zhA½A�
ð14Þ

wm~
1

1zhR½R�
ð15Þ

One might expect that removing the effect of the TF in either

the single activator or single repressor model would cause

reversion to the same basal rate. This is not the case. In the

single activator model setting, hA~0 or ½A�~0 results in a basal

Box 2. Example Model Implementations

Repressor-RNAP competition with activator release model. In this example, RNAP is blocked from binding by a
repressor, R, bound to the same site. Activator A binds to an adjacent site and, through negative cooperativity, ejects the
repressor from DNA, thus freeing the RNAP binding site. Neither activator nor repressor interacts directly with polymerase. The
b vector element b5 contains the cooperative term cAR, which needs to be less than one for the activator and repressor to repel
each other. Note that the repressor and polymerase need not have exactly the same binding site, as long as the presence of one
excludes binding of the other (see Figure 3A). This general principle of allowing or disallowing states can be expanded to
account for promoters with overlapping binding sites [2,30].

A R=RNAP

L~

1 1

1 R½ �

1 RNAP½ �

A½ � 1

A½ � R½ �

A½ � RNAP½ �

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

s~

1

R½ �

RNAP½ �

A½ �

A½ � R½ �

A½ � RNAP½ �

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

b~

b1

b2

b3

b4

b5

b6

~

~

~

~

~

~

1

KR

KP

KA

CARKAKR

KAKp

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

t~

0

0

1

0

0

1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

wm~
sT :bt

sT :b
~

KP½RNAP�zKAKP½A�½RNAP�
1zKP½RNAP�zKA½A�zKR½R�zKAKP½A�½RNAP�zcARKAKR½A�½R�

Sequential binding model. Several known regulatory mechanisms involve sequential binding of activators. In this model,
activator A1 permits binding of activator A2, which in turn recruits polymerase. This model subscribes to Michaelis-like model
logic where all activators are required for binding, but the sequential aspect can only be captured using a state ensemble
approach. We have engineered sequential binding by disallowing activator A2 to bind without activator A1, and disallowing
polymerase to bind without activator A2 (see Figure 3B).

A1 A2 RNAP

L~

1 1 1

A1½ � 1 1

A1½ � A2½ � 1

A1½ � A2½ � RNAP½ �

0
BBBBB@

1
CCCCCA

s~

1

A1½ �

A1½ � A2½ �

A1½ � A2½ � RNAP½ �

0
BBBBB@

1
CCCCCA

b~

b1~

b2~

b3~

b4~

1

KA1

KA1KA2

KA1KA2KP

0
BBBBB@

1
CCCCCA

t~

0

0

0

1

0
BBBBB@

1
CCCCCA

wm~
sT :bt

sT :b
~

KA1KA2KP½A1�½A2�½RNAP�
1zKA1½A1�zKA1KA2½A1�½A2�zKA1KA2KP½A1�½A2�½RNAP�
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rate of zero, the minimum possible. In contrast, setting hR~0 or

½R�~0 in the single repressor model results in a basal rate of kt,

the maximum possible. Investigators must be aware of the context-

dependent definition of the basal rate when formulating

appropriate Michaelis-like models of their systems.

Modular Michaelis Functions as Partition
Functions

What is the physical interpretation of the Michaelis function

architecture? By converting the Michaelis model formulations

above (Equation 13) into thermodynamic functions we will reveal

assumptions underlying Michaelis-like models that are not obvious

in their original formulation. The steps involved in converting one

model to the other also highlight the similarity between these

models, and demonstrate that the Michaelis formulation is simply

a thermodynamic model with specific cis-regulatory rules.

We can reconcile the thermodynamic model with the Michaelis

framework by treating polymerase as an activator. Since

polymerase is required for transcription, we incorporate the basal

thermodynamic function (Equation 5) into the Michaelis-like

formulation, Equation 13, as an activator function (Equations 16

and 17).

wm~( P
m

i~1
Ai P

n

j~1
Rj)(ARNAP) ð16Þ

ARNAP~
Kp½RNAP�

1zKp½RNAP� ð17Þ

Comparing Equations 16 and 17 with Equation 13 illustrates

that the original Michaelis-like function requires the assumption

that KP½RNAP�ww1, such that the activator function for

polymerase ARNAP?1. In other words, the Michaelis approach

assumes that the polymerase site is saturated, or always occupied.

The asymmetry in the way Michaelis functions treat RNAP

becomes clear when they are recast in the thermodynamic

framework. Consider the following Michaelis-like models: activa-

tor only (Equation 18), repressor only (Equation 19), and one

activator and one repressor (Equation 20).

wm~
hA½A�

1zhA½A�
ð18Þ

wm~
1

1zhR½R�
ð19Þ

wm~
hA½A�

1zhA½A�
1

1zhR½R�
ð20Þ

Adding in the polymerase function as in Equation 16 and

multiplying out the terms, we generate the following expressions.

wm~
KphA½RNAP�½A�

1zKp½RNAP�zhA½A�zKphA½RNAP�½A� ð21Þ

wm~
Kp½RNAP�

1zKp½RNAP�zhR½R�zKphR½RNAP�½R� ð22Þ

Comparing the resulting models shows that the Michaelis-like

activator and repressor functions treat the state in which only

RNAP is bound very differently. A one activator promoter

(Equation 21) transcribes only when both RNAP and activator are

present, as represented by the sole numerator term. The presence

of the KP½RNAP� term indicates that polymerase can bind DNA

without activator, but because this state is only in the

denominator, binding does not result in transcription. In contrast,

the repressor model (Equation 22) only transcribes when RNAP is

bound and repressor R is not bound, as reflected by the KP½RNAP�
state being the sole numerator term. Thus, the presence of

repressor inhibits expression absolutely. In order to appropriately

model their own systems with Michaelis-like functions, investiga-

tors should be aware of the different interpretation of the RNAP-

only state in the activator and repressor functions.

Recasting the original Michaelis-like functions as a thermody-

namic ensemble model also highlights its implicit AND-circuitry.

The inclusion of both an activator and repressor in the Michaelis-

like formulation results in a model with only a single term in the

numerator (Equation 23). This means that transcripts are

generated only when activator is bound and repressor is not

bound. Higher numbers of transcription factors continue these

patterns. For example, a two or more activator model requires that

all activators are bound for transcription, and a two or more

repressor model requires that none of the repressors are bound. In

a mixed system with multiple activators and repressors, the trend

set by the one activator and one repressor model (Equation 23)

prevails; transcripts are produced only when all activators

accompany polymerase with no repressors present. Investigators

must decide on the validity of this constraint when employing

Michaelis-like functions.

The implicit AND logic associated with Michaelis-like

functions leads to a seeming paradox. The more activators a

promoter contains, the lower its expression. This is because the

probability of having all activators bound at the same time

decreases with the number of activator binding sites in a

promoter. This seeming paradox and the general AND-circuitry

associated with this formalism led some groups to produce an

OR-logic function for activators (Equation 24) and repressors

(Equation 25) [16,17]:

wm~
hA1½A1�zhA2½A2�

1zhA1½A1�zhA2½A2�
ð24Þ

wm~
1

1zhR1½R1�zhR2½R2�
ð25Þ

The activator function involves addition rather than multipli-

cation of individual transcription factor effects. Following the

same steps outlined above, one can show that the OR-logic

model here no longer produces zero expression when any single

wm~
KphA½RNAP�½A�

1zKp½RNAP�zhA½A�zhR½R�zKphA½RNAP�½A�zKphR½RNAP�½R�zKphAhR½RNAP�½A�½R� ð23Þ
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activator concentration (or affinity) goes to zero. However, if all

activator concentrations are zero, transcription is abolished,

implying that some activator (of either type) is required to

produce transcripts.

To allow basal expression even in the absence of transcription

factors, some groups [14,16,17] introduce an empirical basal leak

term to the Michaelis function formulation. Leak functions can

also be reformulated as thermodynamic models, revealing a

similar set of implicit physical assumptions (see Text S1, Michaelis-

like Functions with Basal Leak).

These are reasonable models provided that the mechanisms

described appropriately reflect the logic of the system being

modeled. Michaelis-like functions can be a simple and powerful

framework for modeling many types of regulatory logic. The

purpose of reformulating these models in the thermodynamic

framework was to demonstrate that Michaelis-like functions are

simply one type of thermodynamic model. The assumptions that

underlie these particular models, which are easy to see in the

thermodynamic framework, are likely to be valid for many, but not

all types of cis-regulatory logic.

Some regulatory mechanisms require the use of the more

general thermodynamic framework. For example, a repressor

might function by directly blocking polymerase binding, so that

simultaneous binding of polymerase and repressor does not occur

[2]. Or, an activator might boost expression, but transcription

continues even in the absence of activator [5]. Michaelis-like

functions can be applied in these situations, but cannot distinguish

between various mechanisms. Box 2 illustrates two examples of cis-

regulatory architectures that can only be represented using the

more general thermodynamic approach.

Hill Cooperativity in the Context of a cis-
Regulatory Function

Cooperativity is a repulsion or attraction between proteins on

the surface of DNA such that the sum of the free energies of

proteins binding independently differs from the energy of the

proteins binding together. We discussed cooperativity in the

thermodynamic framework using Equation 10. Another common-

ly used method to capture cooperativity is the addition of Hill

coefficients (n) to the Michaelis-like functions [14,16,18,27]. For

example, the modified one activator and one repressor models

correspond to:

Ai~
(hA½A�)n

1z(hA½A�)n ð26Þ

Ri~
1

1z(hR½R�)n ð27Þ

These functions are known as Hill functions [24]. Hill functions

measure cooperativity by quantifying deviation from independent

binding in a traditional biochemical binding titration experiment.

Used as cis-regulatory functions, Goutsias and Kim point out that

these functions imply extreme cooperativity; for two proteins, n = 2

implies that the proteins can only bind simultaneously, never

independently [12]. We will show the origin of this assumption

again using the thermodynamic formalism.

Extreme Cooperativity
The assumption of extreme cooperativity must be made in order

to convert the thermodynamic model into a Hill function.

Consider a promoter with two binding sites for an activator, A.

The two A proteins exhibit positive cooperative binding with

constant cA (where cAw1). Because we want to compare our

model directly to the Hill-like model, we make the Michaelis

assumption that both activators must be present for transcription

to occur. Following the steps leading up to Equation 7, we produce

the following cis-regulatory function:

This model is not directly comparable to the Hill function in

Equation 26. In order to reduce this model to a form that is

comparable to the Hill model, we must further assume that the TF

affinity for DNA is small and the cooperative binding constant

large (KA?0, cA??). Under this assumption all terms containing

KA without an accompanying cA disappear:

wm~
KP½RNAP�(KA½A�)2cA

1zKp½RNAP�z(KA½A�)2cAzKP½RNAP�(KA½A�)2cA

ð29Þ

The polymerase binding term can now be factored out.

wm~
(KA½A�)2cA

1z(KA½A�)2cA

KP½RNAP�
1zKP½RNAP� ð30Þ

The right hand term in Equation 30 is the basal promoter

function and the left hand term is the new activator function,

which is now directly comparable to Equation 26. The key point is

that in order to convert the thermodynamic framework into the

Hill framework we must assume that KA is tiny and that cA is

large. The physical interpretation of this assumption is that the

transcription factors can only bind together, never independently.

This comparison reveals other subtleties regarding Hill function–

based cooperativity. Comparing Equation 26 with the left-hand

term in Equation 30, and setting the Hill coefficient n equal to 2,

we find that h2
A~cAK2

A. This provides some physical intuition into

the meaning of the theta term in the Michaelis-like framework. In

addition, we again have to assume that polymerase is in excess so

that the right-hand term of Equation 30 goes to one. In summary,

a Hill coefficient of n corresponds to n identical transcription

factors binding with extreme cooperativity (either none or n are

bound at a given time) to a promoter with n TF binding sites. Like

the Michaelis formalism, all activator TFs must be bound to

initiate expression. This exercise also demonstrates that non-

integer values of n correspond to fractions of proteins binding

DNA, and should thus be used with caution [12,14].

A practical realization of extreme cooperativity is the

oligomerization of TFs prior to binding. While the model above

implies that TFs are monomeric in solution and n-mers only at

the promoter, it is relatively simple to include trans binding

events into the system. In the supplement (Text S1, Oligomer-

ization with Hill Functions) we show how trans oligomerization

wm~
KP½RNAP�(KA½A�)2cA

1zKp½RNAP�z2KA½A�z2KAKP½RNAP�½A�z(KA½A�)2cAzKP½RNAP�(KA½A�)2cA

ð28Þ

PLoS Computational Biology | www.ploscompbiol.org 8 March 2012 | Volume 8 | Issue 3 | e1002407



binding constants contribute to the hA parameter of the Hill

equation.

Discussion

Using expression-profiling methods, investigators routinely

collect large quantities of gene expression data. A mature and

robust quantitative framework would draw meaningful conclusions

from these rich but complex datasets. Here we derived a

thermodynamic state ensemble framework for capturing cis-

regulatory architectures. Our intention here was to clarify the

assumptions of the thermodynamic framework, to provide a step-

by-step guide for constructing such a model, and to impart

guidance in interpreting the physical meaning of the parameters of

these models. Different investigators will collect different types and

amounts of data, in turn requiring pre- and post-processing steps

specific to their respective systems. This includes data filtering and

fitting routines for parameter estimation that we could not address

here and must be dealt with on a case-by-case basis. What we did

attempt to address were the aspects of thermodynamic modeling

that will be common to all investigators; namely the construction

and interpretation of such models.

The flexibility of the thermodynamic formalism makes it simple

to model different promoter architectures and regulatory mech-

anisms. Discrete promoter states determine the overall architec-

ture of the model, with individual states constructed from the

product of activities of DNA-bound molecules. The balance

between productive and silent states determines the probability of

transcription (wm), a term mathematically composed of a

denominator comprising the sum of all states and a numerator

containing the sum of transcriptionally active states. Selecting

whether a state is transcriptionally active, and even whether a state

exists at all, allows a large number of possible models to be

constructed. With this versatility comes both a warning and a

virtue; any architecture devised reflects a specific hypothesis about

the physical system being modeled.

Michaelis-like models are simplified forms of the thermody-

namic framework. Each type of Michaelis-like cis-regulatory

function can be derived from the thermodynamic model

framework by making a few key assumptions. Understanding

these assumptions will help investigators to choose appropriate

models for their systems. Michaelis models generally assume

that polymerase is present in excess and that each transcription

factor included acts at an independent site. Products of

Michaelis-like functions represent the hypothesis that all

activators, and no repressors, must be bound to initiate

transcription. Sums of Michaelis functions correspond to

situations in which at least one activator must be bound for

transcription to occur (basal transcription is disallowed). A

thermodynamic reformulation of Hill functions reflect a specific

type of cooperativity in which either a site is free, or bound by n

proteins, for a Hill coefficient of n. Alternatively, a Hill

coefficient of n can imply binding of an n-mer to the promoter.

These two situations imply two distinct interpretations for the h
parameters. Michaelis and Hill-like functions are valid simpli-

fications of the thermodynamic framework. It is up to individual

investigators to decide when the assumptions underlying these

simplifications are appropriate.

In some cases, investigators must employ the more general

form of the thermodynamic framework. For example, repressors

might inhibit transcription by binding directly to the RNAP

binding site, a mode of repression that cannot be specifically

represented using the Michaelis formulation. Such a mechanism

can be captured by a thermodynamic state ensemble model in

which one disallows the state in which both RNAP and repressor

are simultaneously bound (for examples, see Box 2). In general, it

may be wise to first cast any system under study in the

thermodynamic framework before simplifying to the correspond-

ing Michaelis model so that the underlying assumptions about the

system are clear.

With the exception of a few well-characterized systems like lac

and the OR lysis-lysogeny operator of l-bacteriophage, combi-

natorial cis-regulation of genes is not understood to the point

where one can predict levels of transcription from the cis-

regulatory content of a gene. The parts list of cis-regulatory

components is growing rapidly; soon we will know the binding

preferences of all transcription factors and their activating or

repressing activities [28,29]. Even with this catalog in hand, we

will not understand gene regulation until we understand how the

interactions between cis-regulatory components generate specific

patterns of transcription. We are optimistic that the thoughtful

application of state ensemble models will provide mechanistic

insight into the physical interactions that underlie combinatorial

cis-regulation.

Supporting Information

Text S1 Supporting Information. Text S1 provides addi-

tional detail about alternative forms of the cis-regulatory

expressions, discusses Michaelis-like functions in which there is a

leak term and how these are related to the thermodynamic model

framework, and demonstrates how trans binding events can be

incorporated into a cis-regulatory function.

(PDF)
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