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Posttranscriptional processing of mRNA is an integral component
of the gene expression program. By using DNA microarrays, we
precisely measured the decay of each yeast mRNA, after thermal
inactivation of a temperature-sensitive RNA polymerase II. The
half-lives varied widely, ranging from !3 min to more than 90 min.
We found no simple correlation between mRNA half-lives and ORF
size, codon bias, ribosome density, or abundance. However, the
decay rates of mRNAs encoding groups of proteins that act
together in stoichiometric complexes were generally closely
matched, and other evidence pointed to a more general relation-
ship between physiological function and mRNA turnover rates. The
results provide strong evidence that precise control of the decay of
each mRNA is a fundamental feature of the gene expression
program in yeast.

A though initiation of transcription is well studied and its
importance in regulation is clear, we know much less about

the specificity, precision and regulatory role of mRNA decay.
The abundance of each mRNA in the cell is determined not only
by the rate at which it is produced, but also by its rate of
degradation. mRNA decay rates determine how quickly each
message can adapt to a new steady-state level after a change in
transcription rate, and dynamic control of the decay of specific
transcripts can have an important role in their regulation (1).
The decay rates of specific mRNAs can vary by 100-fold or more
(2, 3) and are affected by a wide variety of stimuli and cellular
signals, including specific hormones (2, 4), iron (5, 6), cell cycle
progression (7, 8), cell differentiation (9, 10), and viral infection
(11). Characterizing this stage in the natural history of each
mRNA is an important step toward understanding the logic and
molecular mechanisms underlying the regulation of the gene
expression program of a genome.

With its ease of biochemical and genetic manipulation, yeast
makes an excellent model for studying eukaryotic mRNA turn-
over. Simple and reliable procedures have been developed to
measure the decay rates of individual mRNAs in yeast, including
global or specific transcriptional shut-off assays (12–14) and in
vivo kinetic labeling (15). However, the global profile of yeast
mRNA turnover has not been systematically and quantitatively
determined. In this report, we present the results of a genome-
wide determination of mRNA decay rates, coupling the global
transcriptional shut-off assay with DNA microarray analysis.

Materials and Methods
Yeast Strain. Saccharomyces cerevisiae strain Y262 (MATa
ura3–52 his4–939am rpb1-1), carrying a temperature-sensitive
mutation in RNA polymerase II (13), was used in this study.

Determination of mRNA Decay by Transcriptional Shut-Off Assay.
Y262 was grown in 500 ml of yeast extract!peptone!dextrose
(YPD) medium at 24°C to OD600 !0.5. The temperature of the
culture was abruptly shifted to 37°C by adding an equal volume
of YPD medium that had been prewarmed to 49°C. Aliquots of
the culture (100 ml) were removed at 0, 5, 10, 15, 20, 30, 40, 50,
and 60 min after the temperature shift. Cells were rapidly
harvested on a nitrocellulose filter (Whatman no. 141109)
followed by immediate freezing in liquid N2. Total RNA was
prepared from cells harvested at each time point by hot phenol
extraction (16).

Microarray Analysis. Yeast DNA microarrays were produced and
hybridized as described (17–19) with modifications outlined
below. For total RNA sample (15–75 !g) at each time point, a
fluorescently labeled cDNA probe was prepared by reverse
transcription in the presence of Cy5-dUTP, using a random
primer (http:!!www-genome.stanford.edu!turnover). Yeast
genomic DNA (200 ng) was digested with DpnII (New England
Biolabs) into 0.3–2-kb fragments, labeled with Cy3-dUTP by
using reverse transcriptase (http:!!www-genome.stanford.edu!
turnover), and used as an internal standard for each hybridiza-
tion. Microarrays were scanned with an Axon Instruments
(Foster City, CA) scanner, and the data were collected with
GENEPIX PRO 3.0 software (Axon Instruments). Only spots for
which the signal-to-background ratio was greater than 1.2 were
selected for analysis. A background corresponding to !0.1
transcripts per cell, determined from results of control experi-
ments, was subtracted from the Cy5!Cy3 fluorescence ratio
measured for each mRNA, and the resulting values for each
mRNA were then plotted as a function of time after the
temperature shift.

For normalization between time points, an internal standard
was prepared with a pool of in vitro-transcribed Bacillus subtilis
RNAs. PCR products representing five B. subtilis DNAs (ATCC
nos. 87482, 87483, 87484, 87485, and 87486) were printed onto
the yeast DNA microarrays (!125 spots on each array in
different locations). RNA transcripts of each of these B. subtilis
DNAs were prepared in vitro and pooled at a final concentration
!4 ng!!l of each B. subtilis mRNA; a detailed protocol is
presented at http:!!www-genome.stanford.edu!turnover. This
internal standard mixture was added to each total RNA sample
analyzed in the decay time course, at a final concentration 400
pg of standard RNA mix per 15 !g of total RNA, and to the
genomic DNA sample, at a final concentration 400 pg per 200 ng
of genomic DNA, before labeling and hybridization. The internal
standard gives us a way to normalize the results from each array
to a constant level of total RNA, based on the assumption that
the total amount of RNA remains approximately constant even
though the mRNAs are decaying. We believe this assumption is
reasonable because mRNAs account for less than 5% of cellular
RNAs.

mRNA Decay Profile Analysis. The IMAGEDISPLAY program was
developed and used to automate the display of mRNA decay
profiles. The program can be downloaded from http:!!
www-genome.stanford.edu!turnover.

A nonlinear least squares model was fit to determine the decay
rate constant (k) and half-life (t1/2) of each mRNA. The decay
rate constant, k, is the value that minimized "i # 1,n[y(ti) $
exp($k!ti)]2, where y(t) is the mRNA abundance at time t and the
summation is taken over all observations for the particular
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mRNA. The half-life is t1/2 # ln2!k. The goodness of fit of the
decay model for each gene was assessed with the F statistic (20),
based on the null hypothesis that the data fit a first-order decay
model.

A bootstrap method was used to calculate confidence intervals
for both t1/2 and k (21). We assumed that residuals between and
within time points were independent. We also assumed that
residuals in triplicate measurements within a time point were
equally distributed, but residuals between time points were not.
For each bootstrap iteration, new time courses were simulated by
sampling the residuals within each time point with replacement
and adding the resampled residuals to the fitted value at their
respective time points. Confidence intervals were calculated only
for mRNAs for which there were replicates for at least 4 time
points. This procedure yielded bootstrap decay rate constants
k(b) for b # 1, . . . , 1,000. By taking the 2.5% and 97.5% quartiles
values of k(b) as lower and upper confidence limits, respectively,
we formed a 95% bootstrap confidence interval for k. By setting
t1/2(b) # ln2!k(b), we similarly formed a 95% bootstrap confi-
dence interval for t1/2.

Statistical Analysis of mRNA Decay in Stoichiometric Protein Com-
plexes. The concordance of the decay rate constants of tran-
scripts encoding components of stoichiometric protein com-
plexes was assessed by comparison to size-matched sets of decay
rate constants for randomly selected transcripts. Because the
SDs of sets of decay rate constants were not independent of the
means, a normalized SD (sd*) was calculated by a nonparametric
statistical method so that they were functionally independent
from the means of the decay rates. This transformation is
accomplished by first plotting the SDs of decay rate constants for
random groups of genes as a function of their means. Then a
natural cubic spline was fit to the scatter plot (22). The SDs were
then divided by the fitted value of the spline at their correspond-
ing means. To measure the concordance of the decay rates for
a complex of size N, we calculated the normalized SD sdn of its
decay rates. We also calculated the normalized SDs sdn

* of 104

randomly selected groups of N mRNAs. The P value of the test
was calculated as the proportion of sdn

* less than or equal to sdn.
An additional statistic was used to evaluate the concordance

of subunit decay rates for the 33 heterodimeric complexes. Let
ki,1 and ki,2 be the two decay rate constants for the ith het-
erodimeric complex. The statistic we used was "(ki,1 $ ki,2)2. This
statistic was compared with 104 sets of random pairings of the 66
mRNAs.

Results
Whole-Genome Determination of mRNA Half-Lives. As a first step
toward determining the mechanism and role of mRNA decay in
the yeast gene expression program, we measured mRNA decay
on a genomic scale, using DNA microarrays coupled with global
transcriptional shut-off assay (Fig. 1A).

Three independent time courses were analyzed. Triplicate
decay curves, each defined by 9 time points after the temperature
shift, were determined for each mRNA. By using a custom
IMAGEDISPLAY program, a set of 4,687 genes with at least 2
independent time courses was selected for further analysis. The
triplicate decay curves of each mRNA were then fitted to an
exponential decay model with a nonlinear least squares method.
This model, although a simplification (23), provided a good fit
to the data and allowed simple parameters (the decay rate
constant, k, and the half-life, t1/2) to be derived for each mRNA
for use in the subsequent analysis. Fig. 1B shows examples of the
decay profile for individual mRNAs, and similar graphs of the
complete set of data are available at http:!!www-genome.
stanford.edu!turnover. A bootstrap method was also used to
determine the SD and the 95% confidence interval of the decay
rate constant (k) and half-life (t1/2) for each mRNA. For 3,735

genes (80%), the half-lives varied by less than %15% in inde-
pendent measurements. Independent Northern analysis of two
individual mRNA species confirmed that the decay rates mea-
sured by microarrays were consistent with the decay of the

Fig. 1. Whole-genome determination of mRNA half-lives. (A) Schematic of
the DNA microarray procedure for determining genomewide mRNA half-lives.
Total RNA was isolated at specified intervals after inactivation of RNA poly-
merase II. Fluorescently labeled cDNA probes were prepared from each RNA
sample by reverse transcription in the presence of Cy5-dUTP. Yeast genomic
DNA was similarly labeled with Cy3-dUTP to provide an internal hybridization
standard for every gene. For each time point, Cy5-labeled probe was mixed
with the Cy3-labeled genomic DNA standard and the mixtures were hybrid-
ized to DNA microarrays. (B) Examples of mRNA decay profiles determined by
quantitative microarray analysis. The different symbols represent data from
three independent time courses; the solid lines represent the nonlinear least
squares fit to an exponential decay model; the dashed lines represent the
upper and lower limits of the 95% confidence interval for the decay curves,
determined by the bootstrapping procedure. The calculated half-life and 95%
confidence interval for the decay of each transcript are listed. (C) Northern
analysis of the decay of mRNAs encoding PGK1 and RPS6B (quantified with a
PhosphorImager).
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full-length transcripts (Fig. 1C). Furthermore, with few excep-
tions, the mRNA half-lives determined with DNA microarrays
were in reasonable agreement with those of 34 mRNAs previ-
ously determined by Northern analysis [correlation coefficient
(Cor. Coeff.) # 0.74] (http:!!www-genome.stanford.edu!
turnover). The exceptions are mainly mRNAs with short half-
lives (via Northern analysis). The fitting protocol used for
analysis of all of the data assumed a zero endpoint to maximize
consistency in the data treatment. This assumption, however,
introduces additional error in the individual fits, especially for
the short-lived mRNAs, and errors for these mRNAs are further
exacerbated by the choice of time points, with the first occurring
at 5 min (20). We cannot make extensive comparisons between
our data and previous global decay data obtained from a single
time point (45 min) (24), because no error analysis is possible
from a single measurement and because most of the mRNA
half-lives are shorter than 45 min.

The half-lives of the 4,687 mRNAs analyzed varied widely,
ranging from !3 min to more than 90 min, with a mean of 23 min
and median of 20 min (Fig. 2A). No simple correlation was found
between the decay rates of mRNAs and their abundance (Cor.
Coeff. # 0.06), the size of the ORF (Cor. Coeff. # $0.01), codon
adaptation index (Cor. Coeff. # 0.04), or the density of ribo-
somes bound to the mRNA (Cor. Coeff. # 0.08) (Y. Arava, D.H.,
and P.O.B., unpublished data) (http:!!www-genome.stanford.
edu!turnover).

Determination of Poly(A) Shortening Rates. Three pathways for
mRNA degradation have been identified in yeast (23). Degra-
dation can be initiated by poly(A) shortening or arrest of
translation at a premature nonsense codon. Poly(A) shortening
has been proposed to be an initial and rate-limiting step in the
decay of many eukaryotic mRNAs (25, 26).

To examine the global relationship between poly(A) shorten-
ing and mRNA turnover, we made a separate series of mea-
surements of the fate of each mRNA, using an anchored
oligo(dT) primer (5&-T20VN-3&), rather than random primers, in
the cDNA probe synthesis. This approach allowed us to track
specifically the mRNAs that retained poly(A) tails of sufficient
length to allow priming. The poly(A)' mRNA decay half-lives,
as defined in our assay, were distributed within a narrower range
and were significantly shorter (peak at 10–15 min) than the
overall mRNA decay half-lives (Fig. 2A). Moreover, the rate at
which most individual mRNAs disappeared from the poly(A)'

population was faster than their overall decay rates (Fig. 2B). A

small number of mRNAs (512 of 4,661) has shorter apparent
half-lives for overall decay than poly(A) shortening. Of these,
445 (87%) have half-lives for poly(A) shortening that are less
than their overall decay half-lives plus 1 SD, suggesting that the
small number of exceptions can be accounted for by experimen-
tal uncertainty. A monotonic and roughly linear relationship was
observed between the poly(A)' mRNA decay rates and the
overall decay rates (Fig. 2B), consistent with a current model for
the major decay pathway in yeast, in which poly(A) shortening
precedes the decay of the entire transcript, and the downstream
events in the decay program depend on poly(A) shortening (23).

Precision in mRNA Decay. How are the decay rates of individual
mRNAs related to the function of the proteins they encode, and
how precisely specified is the decay of each mRNA? To address
these questions, we needed a model that makes a strong, specific
prediction for the decay rates of specific transcripts, based on the
functions of the products. In general, we could not hope to
predict, with any precision, what the decay rate of a specific
mRNA ought to be based on what we know of its function.
Nevertheless, a specific functional relationship between genes,
the empirical evidence for which is relatively easy to assess,
provides a basis for a robust, quantitative prediction for hun-
dreds of mRNAs: We expect the transcripts of genes whose
protein products invariably work together in the cell as compo-
nents of heteromultimeric complexes with defined stoichiometry
to be regulated in a very similar pattern. Indeed, genomewide
studies have demonstrated a striking covariation in the abun-
dance of transcripts that encode subunits of the same stoichio-
metric complexes (17, 27, 28). We therefore focused the ques-
tions of specificity and precision by asking whether, and with
what precision, the decay rates of mRNAs that encode protein
subunits of stoichiometric complexes are matched to one
another.

The nucleosome core is composed of four histone subunits, in
equimolar proportions, assembled into an octamer (29). The 4
distinguishable histone mRNAs have closely matched, rapid
decay rates, with t1/2 # 7 % 2 min (Fig. 3A). The 20S proteasome
core is a stoichiometric complex of 14 different protein subunits
(30). We were able to obtain good measurements of the decay
of 13 of the 14 corresponding mRNAs; all decayed at closely
matched rates, with t1/2 # 13 % 3 min (Fig. 3A). The ribosome,
the largest stoichiometric protein complex, is composed of 32
different proteins in the small subunit and 46 different proteins
in the large subunit. The ribosomal proteins are encoded by 137
different mRNAs (there are 59 duplicated genes) (31). The 131
ribosomal protein mRNAs analyzed in this study had remarkably
similar half-lives, with t1/2 # 22 % 6 min (Fig. 3A). The last
illustrative example is the trehalose phosphate synthase complex,
which plays an important role in carbohydrate metabolism and
stress responses (32, 33). The mRNAs encoding the four distinct
subunits of this stoichiometric complex exhibited uniformly slow
decay rates, with t1/2 # 105 % 12 min (Fig. 3A).

As illustrated by these examples, the transcripts encoding
subunits of a stoichiometric complex appeared generally to be
programmed to decay at rates matched with remarkable preci-
sion. To evaluate the generality of this observation, we identified
a set of 95 heteromultimeric protein complexes that satisfied the
following criteria. (i) They are documented as protein complexes
by both the MIPS database (http:!!www.mips.biochem.mpg.de!
proj!yeast) and the YPD database (http:!!www.proteome.com!
databases); in either case, physical interactions detected solely by
yeast two-hybrid analysis were not considered. (ii) We had
technically adequate measurements of decay rates for the tran-
scripts encoding at least two of the subunits. A similar coordi-
nation in mRNA decay was observed for many of these protein
complexes (Fig. 3B).

To test the significance of the apparent coordination, we used

Fig. 2. Comparison between overall mRNA decay rates and poly(A)' mRNA
decay rates. (A) Distribution of half-lives of mRNA overall decay (blue) and
poly(A)' mRNA decay (red). (B) Scatter plot of half-lives of mRNA overall decay
and poly(A)' mRNA decay for the 4,661 mRNAs. Cor. Coeff. # 0.50. The pink
dashed line indicates a slope of 1. The green solid line is the best least-squares
linear fit of the data, with a slope of 0.41 and y intercept of 1 min (in log scale).
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a permutation method to model the distribution of subunit decay
rates under the null hypothesis: For a protein complex contain-
ing N different subunits, the null distribution of the mRNA decay
rates was modeled by randomly sampling sets of N mRNA decay
rates from our set of 4,482 unique measurements.# We could then
ask whether the decay rates of transcripts encoding members of
a bona fide protein complex of size N were more closely matched
than would be expected for a random set of N transcripts (see
Materials and Methods). The results are summarized in Fig. 3C.
The observed coordination in decay rates was highly significant.
For example, of the 95 protein complexes of size N " 2 that were
suitable for this analysis, in 57 (60%) the concordance in the
decay rates of the subunit transcripts was at a level that would be
expected to occur in fewer than 20% of random complexes of the
corresponding size (http:!!www-genome.stanford.edu!
turnover). Of the remaining 38 complexes, 16 are heterodimeric.
Because the significance of the similarity in any single pair of
decay rates is difficult to evaluate, we evaluated the concordance
of subunit decay rates in the 33 heterodimeric complexes as a
group. The variance of the two decay rate constants for any given
heterodimeric complex was compared with 104 random pairings
of the mRNA pool that contained all of the components of the
heterodimeric complexes. The observed concordance in the
decay rates was highly significant (P ( 10$4). We conclude that
the decay rates of most of these transcripts, and presumably of
yeast mRNAs in general, are programmed with remarkable
precision, to satisfy requirements related to the function of the
product they encode.

The discordance in mRNA decay rates observed for some of
the complexes we analyzed may reflect imprecision in our
measurements, imprecision in the regulation of decay, or a
significant feature of the corresponding regulatory program. A
closer look at some of the outliers suggests that the mRNAs with
apparently anomalous decay rates may have a physiological
function. For example, there were a few noticeable exceptions of
the otherwise precisely coordinated decay of ribosomal protein
(RP) transcripts (Fig. 3D). Among the 131 RP mRNAs analyzed
in this study, 5 mRNAs (those encoding RPS4A, RPS4B, RPL3,
RPS27A, and RPS28A) had aberrantly short half-lives (t1/2 ( 10
min). Perhaps significantly, although more than 70% of RP
transcripts have at least one intron and more than 90% are
regulated by the transcription factor Rap1 (34), four of these five
unstable transcripts (except RPS28A) lack introns and are not
Rap1 targets. Although the altered RP gene transcript levels in
amplified strains suggest that in general RP genes are not

#The measured mRNA half-lives of transcripts that share more than 70% identity in
nucleotide sequences were averaged and treated as a single mRNA species.

some subunits are shown. (B) Clustering of the decay half-lives of mRNAs
encoding subunits of protein complexes. The number of unique components
in each complex is indicated in parentheses. Red open circles, half-lives of
individual mRNAs within each complex; thick black bar, the mean half-life for
each complex; error bars indicate %1 SD. The complexes are sorted along the
vertical axis (top to bottom) in the order of increasing mean half-lives. (C)
Statistical test for the coordinated decay of subunits of stoichiometric protein
complexes with N " 2 components. A P value for the clustering of decay rates
of transcripts for each physical complex of size of N was calculated. The
probability of obtaining a smaller P value from random sampling (104 times)
of N samples from 4,482 unique mRNA half-lives was then determined and
summarized in the histogram. The dashed line represents the uniform distri-
bution expected for the null hypothesis in which there is no coordination
of decay rates. (D) A small set of mRNAs encoding ribosomal proteins
has anomalously fast decay rates. Blue curve, average decay curve of 131 RP
mRNAs; error bars indicate %1 SD; green curves, decay curves of five individual
mRNAs—RPS4A, RPS4B, RPL3, RPS27A, and RPS28B (average of triplicate
measurements)—with very short half-lives (t1/2 ( 10 min).

Fig. 3. mRNA encoding the subunits of stoichiometric protein complexes
exhibit coordinated decay. (A) Examples of coordinated decay of transcripts
for four stoichiometric protein complexes. The number of unique components
in each complex is indicated in parentheses; decay curves for 40 randomly
selected mRNAs, excluding five outliers (see Fig. 2D), encoding unique ribo-
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individually autoregulated at this level (35, 36), RPS4A and
RPS4B have been reported to use autoregulation to regulate
turnover of their transcripts (37, 38). The RPL3 gene product is
one of the earliest ribosomal proteins to assemble in the nascent
large subunit during ribosome biosynthesis (39). Levels of the
RPL3 transcript, uniquely among ribosomal protein mRNAs, are
subject to regulation by the Rrb1 protein, which has been shown
to interact physically in vivo with the RPL3 protein, suggesting
a specialized autoregulatory mechanism (40). The anomalous
decay rates we observed for five specific ribosomal mRNAs may
therefore point to specialized regulatory programs and distinct
functions.

Physiological Coherence in mRNA Decay. Relationships between
mRNA decay rates and more broadly defined functional group-
ings provided additional evidence of the physiological logic of
mRNA decay. For example, transcripts encoding the enzymes
that participate in the central systems of energy metabolism,
including glycolysis!gluconeogenesis, the tricarboxylic acid cy-
cle, and the glyoxylate cycle, are characteristically among those
that live the longest (Fig. 4A). In contrast, virtually all of the
transcripts encoding the proteins of the mating pheromone
signal transduction pathway turn over relatively rapidly (Fig. 4B).
As shown in Fig. 4C, mRNAs encoding translation initiation
factors and termination factors turn over rapidly, whereas tran-
scripts encoding translation elongation factors lived 2–4-fold
longer. One general relationship between the stability of an
mRNA and the physiological function of its product seems to be
that mRNAs involved in central metabolic functions are gener-
ally relatively long-lived, whereas those involved in regulatory
systems turn over relatively rapidly. Such a relationship has been
suggested based on studies of a number of individual mRNAs
(12) and is strongly supported by our genomewide analysis of
mRNA turnover.

In summary, our results provide strong evidence for functional
coordination of mRNA decay. Nevertheless, we cannot deter-
mine whether there is greater precision in the coordination of
decay for mRNAs encoding proteins that form stoichiometric
complexes than other mRNAs encoding proteins that function in
the same biological process. Such analysis is hindered by the
limitations in defining the functional interrelationships of gene
products.

Discussion
By systematically measuring the decay of mRNAs from more
than 4,000 yeast genes, we found that this key step in gene
expression is specified for individual genes with considerable
precision. The programmed decay of each mRNA, like initiation
of transcription, seems to be intimately related to the physio-
logical role of the encoded product. The mRNA levels can be
adjusted more rapidly for mRNAs with short half-lives. Further-
more, theoretical studies have shown that coordinated regulation
of mRNA turnover, transcription, translation, and protein turn-
over can provide precision, speed, and flexibility in biological
regulation beyond what would be possible with any subset of
these regulatory mechanisms (1). Indeed, steroid hormones
affect the stability of the target mRNAs as well as the transcrip-
tion of the target genes (2, 4). In erythroid differentiation,
induction of globin gene transcription is coupled with destabi-
lization of a large number of cellular mRNAs (9), permitting a
rapid redirection of cellular resources to the production of
hemoglobin. There is evidence to suggest that the stability of
mRNAs and the proteins they encode are often correlated,
although the systems that mediate their degradation are
distinct (1).

In this study, mRNA decay was measured under only a single,
nonphysiological condition. Indeed, features of the decay pro-
gram observed in this experiment may reflect a stress re-

Fig. 4. Coherence of mRNA turnover in physiological systems. The range of
half-lives, from 0 to more than 45 min, was continuously color-coded with a
green-yellow-red gradient (green # shortest half-lives, red # longest half-
lives). For protein complexes with multiple subunits, smaller blocks were
individually color-coded to represent the mRNA half-lives for each subunit.
White boxes represent transcripts for which we did not obtain an adequate
measurement of decay. TCA, tricarboxylic acid. mRNA turnover in (A) central
energy metabolism systems (modified from ref. 17); (B) the pheromone signal
transduction pathway (modified from ref. 43); and (C) translation factors.
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sponse.** We think it unlikely that the mRNA decay rate is a
static property of individual mRNAs, indifferent to changing
physiological demands. It will be of great interest to determine
whether and how mRNA stability is dynamically regulated in
response to changing conditions.

What molecular mechanisms account for the specificity and
precision of mRNA decay? The decay rates must be specified by
sequence or structural features that dictate their susceptibility to
the degradation machinery, either directly or indirectly. These
mRNA-specific features could include sequences or secondary
structures recognized by transacting factors (e.g., endo- and
exonucleases, RNA binding regulatory proteins) and more gen-
eral features of the mRNA sequence and structure. Previous

studies have suggested that the decay rates of individual yeast
mRNAs may be correlated with the frequency of rare codons
(12) or inversely related to the length of the protein coding
sequence (42). We were unable to detect any significant corre-
lation between mRNA half-lives and codon usage or ORF
lengths. Nor was there any detectable correlation between the
decay rate of individual mRNA species and their abundance or
translation rates. This systematic picture of mRNA decay pro-
vides a rich resource for further in-depth investigations of the
molecular codes and mechanisms that regulate the turnover of
individual mRNAs.
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