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Regulatory circuits controlling gene expression constantly rewire to adapt to environmental stimuli,
differentiation cues, and disease.We review our current understanding of the temporal dynamics of
gene expression in eukaryotes and prokaryotes and the molecular mechanisms that shape them.
We delineate several prototypical temporal patterns, including ‘‘impulse’’ (or single-pulse) patterns
in response to transient environmental stimuli, sustained (or state-transitioning) patterns in
response to developmental cues, and oscillating patterns. We focus on impulse responses and
their higher-order temporal organization in regulons and cascades and describe how core protein
circuits and cis-regulatory sequences in promoters integrate with chromatin architecture to
generate these responses.
Introduction
The transcriptional program that controls gene expression in

cells and organisms is remarkably flexible, constantly reconfi-

guring itself to respond and adapt to perturbations. These

changes are apparent across a broad range of timescales,

from rapid responses to environmental signals (i.e., minutes to

hours) to slower events during development and pathogenesis

(i.e., hours to days) (Lopez-Maury et al., 2008).

Dissecting these dynamic changes, both functionally and

mechanistically, is a fundamental challenge in biology and raises

several key questions. What is the scope of temporal patterns of

gene expression in biological systems? What functions do

different patterns serve? What molecular mechanisms underlie

the formation of each pattern, and what is their capacity to

process the temporal signal into a specific change in gene

expression over time? Finally, are any principles, either func-

tional or mechanistic, shared among temporal responses in

distinct timescales?

Recent parallel advances in genomics and cell biology provide

an unprecedented opportunity to map dynamic gene expression

and decipher its underlying mechanisms. At the same time, live-

cell imaging of fluorescent reporter proteins (Locke and Elowitz,

2009) allows us to study gene expression at fine temporal reso-

lution and at the single-cell level. Such studies, when coupled

with molecular manipulations and quantitative modeling, can

identify basic mechanisms of temporal patterning. Further,

genomic technologies provide global insights on the regulation

of gene expression by allowing us to measure and perturb

many aspects of the regulatory system, such as mRNA levels,

protein-promoter interactions (Badis et al., 2009; Lee et al.,

2002), or chromatin modification states (Wei et al., 2009;

Whitehouse et al., 2007). Finally, emerging methods in synthetic

biology, robotics, andmicrofluidics (Szita et al., 2010) are poised
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to transform our ability to manipulate cellular inputs and compo-

nents at unparalleled temporal resolution.

Here, we review recent advances in our understanding of tran-

scriptional dynamics, including the prototypical patterns of

temporal mRNA expression and their underlying molecular

mechanisms. We identify a small number of prominent temporal

patterns, such as single pulse responses (‘‘impulses’’), sustained

state-transitioning patterns, and oscillations. Focusing on

impulse responses, we then present the molecular circuits that

generate these patterns, highlighting the prominent role that

transcription factor localization, integration of multiple inputs

through cis-regulatory elements, and nucleosome occupancy

play in tuning the response to a given stimulus. Finally, we

discuss the prospect for a unified view of regulatory dynamics

across timescales and systems, emphasizing critical directions

for further research.

Prototypical Patterns of Temporal Dynamics
What capacity does a cell or organism have to generate

temporal patterns of gene expression? Recent studies reveal

several key classes of patterns (Figure 1). The first one, indefinite

oscillators (Figure 1A), plays integral roles in homeostasis, such

as the execution of the cell cycle or circadian rhythm. Other

classes of temporal patterns follow an external stimulus. These

include impulse (or single-pulse) patterns in response to envi-

ronmental stimuli (Figures 1B–1D) and sustained (or state-

transitioning) patterns in response to developmental stimuli

(Figure 1E). Each of these patterns serves a set of interrelated

functional goals, including optimizing the investment of cellular

responses, temporally compartmentalizing antagonistic pro-

cesses, and imposing order on the biogenesis of complex bio-

logical systems. On a systems-wide scale, the regulation of

individual genes is commonly organized at a higher order into
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Figure 1. Prototypical Patterns of Temporal Dynamics of Gene

Expression
Schematic views of gene expression levels (y axis; arbitrary units) over time
(x axis) commonly found in cells in steady state or during a response to envi-
ronmental, developmental, or pathogenic stimuli. Blue and red plots show
possible profiles for different genes under each category. Common functions
for these gene expression patterns are listed.
regulons, in which a group of genes are controlled by the same

transcription factors and, thus, share the same gene expression

patterns. In addition, genes can be organized into transcrip-

tional cascades and other patterns in which expression is
ordered sequentially. Here, we focus on the impulse-like

pattern, specifically its function and integration within transcrip-

tional programs.

Impulse (Single-Pulse) Responses to Environmental
Signals
Changes in gene expression in response to perturbations of the

surrounding environment, such as heat, salinity, or osmotic pres-

sure, typically follow a characteristic ‘‘impulse’’-like pattern

(Chechik and Koller, 2009; Chechik et al., 2008). Transcript levels

spike up or down abruptly following the environmental cue,

sustain a new level for a certain period of time (which may or

may not depend on the continuation of the cue), and then transi-

tion to a new steady state, often similar to the original levels

(Figure 1B). Impulse patterns are prevalent in responses to envi-

ronmental changes in all organisms, from bacteria to mammals

(Braun and Brenner, 2004; Gasch et al., 2000; Litvak et al.,

2009; Lopez-Maury et al., 2008; Murray et al., 2004).

One of the most extensively studied impulse systems is the

environmental stress response (ESR) program in yeast. The

ESR consists of �900 genes that exhibit short-term changes in

transcription levels in response to various environmental

stresses (Gasch et al., 2000). The transient impulse pattern of

the ESR likely represents an adaptation phase, during which

the cell optimizes its internal protein milieu before resuming

growth (Gasch et al., 2000). Indeed, many of the downregulated

genes in the ESR are associated with protein synthesis, reflect-

ing the characteristic transient suppression in translation initia-

tion and growth (Gasch et al., 2000). The ESR is also associated

with the brief induction of genes involved in specific response

mechanisms, such as DNA-damage repair, carbohydrate

metabolism, and metabolite transport (Capaldi et al., 2008;

Gasch et al., 2000). A notable exception to the impulse-like

stress response in yeast is the case of starvation, in which the

cells initiate more sustained programs, such as quiescence, fila-

mentation, or sporulation (Lopez-Maury et al., 2008).

Transient impulse patterns are also prevalent in mammalian

cells (Foster et al., 2007; Litvak et al., 2009; Murray et al.,

2004), extending beyond environmental stimuli. For example,

when innate immune cells, such as macrophages (Gilchrist

et al., 2006; Ramsey et al., 2008) or dendritic cells (Amit et al.,

2009), respond to pathogens, expression changes in individual

genes follow a clear impulse pattern. These patterns, however,

are often coupled to each other, forming multistep transcrip-

tional cascades, in which the products of genes that are induced

early in a response affect the expression of downstream targets.

These targets, in turn, may exhibit either an impulse pattern or

a more sustained one that initiates a long-term change in the

cell’s state (Amit et al., 2007a; Murray et al., 2004).

Sign-Sensitive Delay and Persistence Detection

in Impulse Responses

Impulse patterns can respond distinctly to the introduction of

a signal versus its withdrawal. This differential response results

in a ‘‘sign-sensitive delay’’ (Figure 1C), in which the speed of

the cell’s response to one ‘‘sign-shift’’ (e.g., from the presence

to the absence of a nutrient) is different from that of the comple-

mentary shift (e.g., from the absence to the presence of

a nutrient).
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Sign-sensitive delays are common in responses of microor-

ganisms to changes in nutrients. For example, consider the

arabinose-utilization system of E. coli, in which cyclic adenosine

monophosphate (cAMP) regulates transcription from the

L-arabinose operon. The transcriptional response to an increase

in cAMP (i.e., ‘‘on’’ sign) is much slower than to a cAMP decrease

(i.e., ‘‘off’’ sign) (Mangan et al., 2003). One possible reason for

this asymmetry is that, at least inside a mammalian host, the

‘‘on’’ state is common whereas the ‘‘off’’ state is maintained

only during short and rare pulses of glucose. Consequently,

although the cell can halt the production of L-arabinose genes

soon after the introduction of glucose, it can tolerate slower

commencement of their production when glucose levels

decrease and cAMP is produced (Mangan et al., 2003). Alterna-

tively, a sign-sensitive delay may reflect noise filtering; the cell

refrains from activation of response pathways following spurious

or transient signals. For the arabinose system, the ‘‘on’’ switch

delay is approximately 20 min, comparable to the timescale of

spurious pulses of cAMP in other natural settings (Alon, 2007).

Conversely, a delayed response to the ‘‘off’’ switch can

prolong the effect of a transient stimulus. For example, the

expression of flagella motor genes in E. coli persists for 1 hr after

the biogenesis input signal is turned off, but no delay occurs

during the on switch. Indeed, this delay time in shutting down

is comparable to the time needed for the biogenesis of

a complete flagella motor (Kalir et al., 2005).

Similar principles of signal processing in impulse responses

have also been observed in mammalian systems. For instance,

a small regulatory circuit that controls the expression of the

gene encoding the proinflammatory cytokine interleukin-6

(IL-6) in mouse macrophages exhibits a delayed response to

lipopolysaccharide (LPS) stimulation (the on switch) and discrim-

inates between transient and persistent signals in the innate

immune system (Litvak et al., 2009). Other ‘‘persistence detec-

tion’’ mechanisms have also been observed in transcriptional

responses to DNA damage (Loewer et al., 2010), to epidermal

growth factor (EGF) (Amit et al., 2007a), and to extracellular-

signal-regulated kinase (ERK) signaling (Murphy et al., 2002).

Transcriptional Anticipation as an Adaptation to

Dynamic or Noisy Environments

Most studies of environmental stimuli in the lab focus on one sus-

tained signal at a time, but the natural environment to which cells

are adapted is substantially more complex, noisy, and irregular

(Lopez-Maury et al., 2008; Wilkinson, 2009). Impulse-like tran-

scriptional programs reflect some strategies that cells employ

to handle such temporally fluctuating environments.

Random fluctuations are optimally handled by sensing

environmental changes and specifically responding by tran-

scriptional changes in relevant genes, as described above

(e.g., Capaldi et al., 2008; Gasch et al., 2000). In certain cases,

a population of cells may respond stochastically; they activate

different changes in gene expression in different cells of the

same population, thus ‘‘hedging’’ their adaptive bets

(Lopez-Maury et al., 2008).

When fluctuations are stable and predictable, bacteria and

yeast cells may use an anticipatory strategy for gene regulation

(Mitchell et al., 2009; Tagkopoulos et al., 2008). For example,

when exposed to heat shock, yeasts induce an impulse
888 Cell 144, March 18, 2011 ª2011 Elsevier Inc.
response of genes needed for oxidative stress, although these

genes are not directly necessary for adaptation to heat shock.

Interestingly, yeast do not induce heat shock genes in response

to oxidative stress (Mitchell et al., 2009). This asymmetry

(Figure 1D) may reflect the predictable order of the two stresses

under natural circumstances: oxidative respiration and accumu-

lation of oxidative radicals follow a temperature increase during

fermentation.

Notably, this anticipation strategy differs from symmetrical

cross-protection (Kultz, 2005) through shared stress-response

pathways (Gasch et al., 2000). Rather, it indicates that any opti-

mization of transcriptional programs during evolution occurred in

a complex adaptive landscape. Thus, a strategy that may appear

‘‘suboptimal’’ when considering only one stimulus in the lab may

indeed be optimal in the presence of multiple simultaneous or

sequential stimuli.

Higher-Order Temporal Coordination of Impulse

Responses

A functional temporal program of gene expression requires

appropriate temporal coordination between genes (Figure 1F).

Studies reveal two main classes of temporal coordination: regu-

latory modules and timing motifs.

A regulatory module consists of genes that are coexpressed

with the same temporal pattern or amplitude (FANTOM

consortium et al., 2009; Gasch et al., 2000; Spellman et al.,

1998). Regulatory modules serve to coordinate the production

of proteins that are needed to perform relevant cellular functions

in the given response. Regulatory modules are a hallmark of all

known transcriptional programs and all known temporal patterns

(Figure 1), including oscillatory patterns (e.g., Spellman et al.,

1998), sustained responses (e.g., FANTOM consortium et al.,

2009), and impulse responses (e.g., Chechik et al., 2008).

Complementing the tight temporal coincidence within regu-

lons, timing motifs reflect a particular order of transcriptional

events among genes or modules, such as a linear cascade of

genes with sequentially ordered expression (Alon, 2007; Chechik

et al., 2008; Ihmels et al., 2004). In microorganisms, such

ordering is commonly observed among genes encoding meta-

bolic and biosynthetic enzymes, and therefore, it can play an

important role in achieving metabolic efficiency or avoiding toxic

intermediates (Chechik et al., 2008; Ihmels et al., 2004; Zaslaver

et al., 2004). For example, following deprivation of amino acids,

E. coli induces the expression of amino acid metabolic genes in

the same order that their encoded enzymes are present in the

relevant amino acid biosynthetic pathway (Zaslaver et al.,

2004). This ‘‘just-in-time’’ pattern (Zaslaver et al., 2004), which

may optimize resource utilization, has also been observed in

other bacterial processes, most notably flagellar biogenesis

(Kalir et al., 2005).

A broader range of ordered patterns of expression onset, typi-

cally in impulse responses, is found in metabolic enzymes in

yeast (Chechik et al., 2008; Ihmels et al., 2004). These include

timing motifs with gene expression in the same order as the

metabolic pathway (i.e., a just-in-time induction or shutoff of

a pathway), as well as in the reverse order to the metabolic

pathway. These reversed directions possibly contribute to the

fast removal of an endmetabolite that is either toxic or otherwise

disruptive under the new condition (Chechik et al., 2008).



Coordinated timing motifs are also found at metabolic branch

points (Chechik et al., 2008; Ihmels et al., 2004). For example,

consider a metabolic funnel, where two enzymes (A, B) produce

complementary metabolites that are together consumed by

a third reaction (catalyzed by C). In the ‘‘funnel-same-time’’

motif, the genes that encode the three enzymes (A, B, and C)

are often expressed simultaneously, thus optimizing metabolite

use by coordinating the production or consumption of metabo-

lites along codependent branches. Similar temporal coordina-

tion was found for the genes encoding enzymes in ‘‘forks,’’

involving one enzyme producing two metabolites, which are

then consumed by two separate reactions.

Ordered Impulse Responses within State-Transitioning

Systems

Cell-fate decisions are typically associated with stable changes

in gene expression that transition the regulatory system from one

steady state to the next (Figure 1E). Such cell-fate decisions are

prevalent in development (Basma et al., 2009; Nachman et al.,

2007; Oliveri et al., 2008), pathogenesis (Iliopoulos et al., 2009),

and immune responses (Amit et al., 2007a, 2009; Ramsey

et al., 2008; Wei et al., 2009). State transitioning in cells involves

sustained induction or repression of gene expression, stabilizing

the cell on a new characteristic expression program, and disas-

sociating it from its precursors. Nevertheless, processes that

lead to such stable changes often involve a succession of

impulse responses that promote transient effects necessary for

achieving the transition.

Such a combination of transient and stable changes in tran-

scription was observed during PMA (phorbol myristate

acetate)-induced differentiation of myelomonocytic leukemia

cells (THP-1) cells (FANTOM consortium et al., 2009). Sustained

responses included repression of genes required for cell-cycle

progression and DNA synthesis, which is consistent with the

growth arrest associated with PMA-induced differentiation. In

addition, genes that characterize the differentiated phenotype

(e.g., immune response) were persistently induced. Conversely,

transient, impulse-like, changes were associated with various

transcription factors that play an important role early in the tran-

sition, promoting the differentiation program prior to repression

of the factors that maintain the undifferentiated state. A similar

pattern, specifically immediate early impulse responses of key

regulators followed by stable changes of downstream genes,

has been observed inmany other mammalian systems, including

responses to growth (Amit et al., 2007a), pathogens (Amit et al.,

2009), and stress (Murray et al., 2004) signals.

Impulse responses are not limited to the immediate wave of

transcription at the beginning of the state transition. Rather,

a succession of impulses, forming a series of transcriptional

‘‘waves,’’ has been observed in various state-transitioning

responses (Amit et al., 2007a, 2009; Ramsey et al., 2008; Shapira

et al., 2009). For instance, the response of immune dendritic cells

to pathogens involves several waves of induction in which core-

gulated genes follow a simple impulse profile with distinct onset

and offset times (Amit et al., 2007a). As in PMA-induced differen-

tiation, the first wave is an immediate-early response enriched for

genes that encode proteins with roles in transcriptional regula-

tion. Then a subsequent transcriptional wave is enriched for

genes that are required for extracellular signaling (e.g., inter-
feron-beta 1 or IFNB1) and motility (e.g., chemokine ligand 3 or

CCL 3) during that time interval (�2–4 hr post-stimulus) in the

in vivo innate immune response. This temporal organization

allows innate immune cells to activate the CCL3 ligand at the

appropriate time, favoring the migration of activated cells to the

draining lymph node to activate the adaptive immune response.

Long transcriptional cascades of ordered sequential regula-

tion are also at the basis of many complex developmental

processes (Davidson, 2010). For instance, in the sea urchin

embryo, the transcriptional program of skeletogenic cell devel-

opment in endomesoderm specification includes several layers

of regulation that correspond to developmental phases (Oliveri

et al., 2008). Progression through the phases is facilitated by

a regulatory cascade in which transcription factors that are

active during one phase (e.g., early micromere specification)

activate genes in the next phase (e.g., late specification).

Notably, transcriptional changes in genes encoding regulatory

factors can also feedback and regulate the expression of their

temporal ‘‘predecessors’’ (Amit et al., 2007a). Such mechanisms

are used to shape both impulse responses and sustained

responses, as we discuss below.

Mechanism of Temporal Control of Impulse Responses
What is the cell’s capacity to ‘‘compute’’ a temporal pattern of

mRNA expression? Are there canonical molecular mechanisms

that underlie distinct types of patterns? Can a single mechanistic

unit generate more than one pattern depending on the incoming

signal or its downstream target? In this section, we focus on the

molecular mechanisms that generate impulse responses at

single genes, gene modules, and temporal motifs.

Network Architecture Can Be Decomposed

into Characteristic Topological Motifs

Regulatory systems that control gene expression are often rep-

resented as networks (i.e., directed graphs) with the nodes cor-

responding to regulatory proteins (e.g., transcription factors) and

the edges linking a DNA-binding protein to proteins encoded by

genes it binds to and regulates (e.g., Hu et al., 2007; Lachmann

et al., 2010; Shen-Orr et al., 2002). Such graphs have been

assembled from many small-scale studies on regulation of indi-

vidual genes and operons (Shen-Orr et al., 2002) or by system-

atic chromatin immunoprecipitation (ChIP), in vitro assays, and

computational analysis of cis-regulatory sequence elements

(Badis et al., 2009; Harbison et al., 2004; Hu et al., 2007; Lach-

mann et al., 2010; Lee et al., 2002).

Although network graphs appear highly complex, they can be

effectively decomposed to putative functional units based on

recurring topological patterns (Figure 2). These ‘‘network motifs’’

(Shen-Orr et al., 2002) are small subnetworks consisting of only

a few nodes and edges with a topological pattern that is signifi-

cantly overrepresented in the transcriptional graph.

Although the patterns themselves are static, they can be

associated, analytically (Bolouri and Davidson, 2003; Goentoro

et al., 2009; Kittisopikul and Suel, 2010; Mangan et al., 2003;

Shen-Orr et al., 2002; Tyson et al., 2003) or experimentally

(Basu et al., 2004; Cantone et al., 2009; Kaplan et al., 2008; Man-

gan et al., 2006; Rosenfeld et al., 2002), with different dynamic

interpretations, thus relating the architecture of these network

components with a functional capacity for generating temporal
Cell 144, March 18, 2011 ª2011 Elsevier Inc. 889



Figure 2. General Network Motifs in Transcriptional Regulatory

Networks
General motifs found in transcriptional regulatory networks are shown. Nodes
represent proteins; edges are directed from a DNA-binding protein to a protein
encoded by a gene to which it binds and regulates. Arrows and blunt-arrows
represent activation and repression, respectively; circle-ending arrows are
either activation (+) or repression (�). Relevant functions for these motifs are
listed.
responses (Figure 2). These responses include rapid or slowed

responses (Figures 2A and 2B), feedback control (Figure 2C),

sign-sensitive delays (Figure 2D), temporal ordering (Figure 2E),

and temporal coordination in modules (Figure 2F).

Notably, the relation between the topology of a motif and its

induced temporal pattern is far from unique and depends on

the characteristics of the incoming signal and of the interacting

molecules (Macia et al., 2009). For instance, protein production

rate, protein degradation rate, or activation thresholds of regula-

tors can each alter the dynamic transcriptional pattern generated

by the motif (Lahav et al., 2004). Moreover, different motifs or

combinations of motifs (Geva-Zatorsky et al., 2006) can induce

similar behaviors. For a more thorough discussion of network

motifs, we refer the reader to other extensive reviews (Alon,

2007; Davidson, 2009, 2010; Tyson et al., 2003).

Combinatorial Logic in the Feedforward Loop Generates

Sign-Sensitive Delays

The feedforward loop (Figure 2D) is a major building block of

combinatorial regulation (Amit et al., 2009). A feedforward loop

has a unidirectional structure consisting of three nodes: an

upstream regulator X that regulates a downstream regulator Y,

which in turn regulates a downstream target Z (which is not

necessarily a regulator). An additional edge is directed from X

to Z, thus closing a unidirectional ‘‘loop.’’ Each interaction can

be suppressing or activating, resulting in eight distinct feedfor-

ward loop structures.
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One commonly found structure in transcriptional networks

(Alon, 2007) is the Type-1 coherent feedforward loop, in which

all of the interactions are activating. This feedforward loop can

generate a sign-sensitive time delay. The length of the delay

and whether it occurs during the off or the on switch depends

on the specific molecular parameters of the loop. The particular

logic mediated by the loop largely depends on the organization

of cis-regulatory elements in the promoter of the target gene

(‘‘Z’’). For instance, when the two transcription factors in

a coherent feedforward loop exhibit an ‘‘or’’ logic at the promoter

of the downstream gene (i.e., only one transcription factor

suffices to activate the gene), the resulting dynamics is usually

a sign-sensitive delay with faster response to the on switch

and a prolonged transcriptional response, as in flagellar biogen-

esis (Kalir et al., 2005). Conversely, an ‘‘and’’ logic for the two

transcription factors (i.e., both factors are needed to activate

the gene) is associated with a faster response to the off switch,

as in the L-arabinose operon. This feedforward loop structure

facilitates persistence detection (Mangan et al., 2003).

Another prevalent form of the feedforward loop is the inco-

herent variant (Figure 2D), in which Y acts as a repressor rather

than an activator. Depending on its parameters, this motif can

induce pulse-like responses (Basu et al., 2004), lead to a rapid

(Mangan et al., 2006) or nonmonotone (Kaplan et al., 2008)

response of the downstream target Z, or provide a mechanism

fordetecting fold-change (e.g., that a component’s level changed

by 2-fold rather than an absolute value) (Goentoro et al., 2009).

Single-Input Modules and Chromatin Architecture

Coordinate Responses in Modules and in Just-in-Time

Motifs

The single-input module (Figure 2F) motif occurs when a single

regulator has multiple targets (Alon, 2007; Lee et al., 2002).

This architecture, often associatedwith regulatory hubs (‘‘master

regulators’’), can facilitate a temporally coordinated response of

multiple genes in a module.

However, the activation of the downstream genes in a single-

input module is not necessarily concurrent, and differences in

their promoter properties can lead to ordered activation

(Figure 3). Specifically, a transcription factor’s affinity for

a specific cis-regulatory sequence affects the fraction of time

that it occupies a binding site (Bruce et al., 2009; Tanay, 2006).

The stronger the binding affinity, the higher the probability that

the transcription factor remains bound to a site and recruits the

transcriptional machinery (Hager et al., 2009). Differential recruit-

ment at different promoters results in a range of induction thresh-

olds, allowing a single transcription factor with a temporally

fluctuating level to generate an ordering of its target genes.

This principle was demonstrated in a recent study using

a series of genetically modified promoters of the Pho5 gene

during the response to phosphate starvation in yeast (Lam

et al., 2008). In this system (Figure 3), promoters with high-affinity

sites for the transcription factor Pho4 that are ‘‘open’’ (i.e., not

occluded by nucleosomes) responded toweaker signals of slight

phosphate deprivation (Figure 3B) and had a shorter response

time (Figure 3A) to phosphate starvation compared to those

with lower-affinity sites. Similar behavior was observed for

synthetic promoter variants and for different targets of Pho4

that had similar promoter architecture.



Figure 3. Promoter Regions and Nucleosome Positioning as

Temporal Signal Processors
(A) The transcription factor Pho4 (orange oval) targets different variants of the
Pho5 promoter following phosphate starvation in yeast cells (left). The purple
(upper) promoter contains the wild-type Pho5 promoter sequence, whereas
the green and red promoters (denoted as H1 and H3, respectively) are
synthetic variants. Each target exhibits a different response time (right), de-
pending on the affinity of Pho4 for its binding site when the site is unoccluded
by nucleosomes (depicted in panel B). The y axis corresponds to median
fluorescence levels, across separate measurements, scaled between the
promoter-specific expression minimum at 0 hr and maximum at 7 hr after
induction.
(B) Suggested mechanism for decoupling promoter induction threshold from
dynamic range. These cartoons show occupancies of Pho4 and nucleosome
at the three Pho4 promoter variants under mild (left) and acute (right) phos-
phate starvation. Gray-blue and yellow ovals represent nucleosomes and
Pho4, respectively; dark blue circles and red triangles correspond to low-
affinity and high-affinity binding sites, respectively; and Xmarks ablation of the
Pho4-binding motif. Darker blue ovals represent more highly occupied
nucleosomes (across a cell population). Under intermediate levels of phos-
phate (left), substantial Pho4 occupancy and subsequent transcriptional
activity occurs only at promoters with exposed high-affinity sites. The plot at
the bottom left shows the respective expression levels, divided for each variant
by the maximum level at full starvation in arbitrary units (a.u.). In the absence of
phosphate (right), Pho4 activity is saturated, resulting in nucleosome eviction
and maximum expression at all promoters. The plot at the bottom right shows
the respective maximal induction levels (a.u.). Reproduced from Lam et al.
(2008), with permission from the authors.
Thus, graded binding affinities complement the single-input

module motif in which a single transcription factor induces

temporal ordering among its targets through differential binding

affinity (Figure 3A). In the phosphate starvation responses, this

results in tuning of the responding genes to the severity and

duration of phosphate depletion. At intermediate phosphate

levels (with intermediate levels of nuclear Pho4), first-response

genes with exposed high-affinity sites like PHO84 and PHM4

allow the cell to take up environmental phosphate and mobilize

internal reserves. Under starvation conditions, this initial

response is followed by a second-order response such as upre-

gulation of PHO5 and other phosphate-scavenging components

(Springer et al., 2003).

More generally, such graded affinities may explain the ordered

timing of an impulse-like response of genes within metabolic

pathways, in timing motifs such as just-in-time. In yeast, the

timing of ordered activation in a timing motif was found to corre-

late with the affinity of the respective gene with its regulating

transcription factor (Chechik and Koller, 2009; Chechik et al.,

2008). Similar principles were also observed in E. coli (Zaslaver

et al., 2004).

Nucleosome Positioning Contributes to Activation

Timing

The position of nucleosomes in a gene promoter impacts the

accessibility of transcription factors for their DNA-binding sites.

Therefore, nucleosome positioning also affects the order of acti-

vations across several genes regulated by the same transcrip-

tion factor. This effect was convincingly demonstrated in the

Pho5 system (Lam et al., 2008). Most Pho4-binding sites are

occluded under nucleosomes in normal conditions, but they

become exposed when chromatin is dynamically remodeled in

response to phosphate starvation (Figure 3B). The threshold of

response, and hence a gene’s onset time, is thus also affected

by the chromatin architecture of the repressed state.

Conversely, the dynamic range of the response is determined

by the active state’s architecture. Maximum transcriptional

outputs of the Pho5 variants differed by up to 7-fold and corre-

lated with the number, affinity, and placement of Pho4 sites,

irrespective of their accessibility in the initial (pre-starvation)

chromatin state. These results suggest a mechanism by which

the cell decouples the determinants of promoter activation

timing (site affinity and nucleosome positions) from the determi-

nants of expression capacity (site affinity alone). Global studies

on changes in nucleosome positions in response to environ-

mental signals (Deal et al., 2010) support the generality of the

Pho model, at least in yeast (Shivaswamy et al., 2008).

Protein Oscillators Generate Coordinated Impulse

Responses across Regulons

Recent studies suggest that oscillations in the localization or

activity of trans-regulators that control single-input modules

play a substantial role in governing (nonoscillating) impulse tran-

scriptional patterns. Most notably, coordinated impulse patterns

across a regulon may often stem from limited oscillations in the

nuclear localization of a regulatory factor controlling the target

genes (Ashall et al., 2009; Cai et al., 2008). This has been sug-

gested for the transcription factor Crz1 in yeast, which uses

a ‘‘pulsing’’ mechanism to encode information about extracel-

lular calcium levels (Figure 4) (Cai et al., 2008).When extracellular
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Figure 4. Coordinated Impulse Response Generated by Protein

Oscillators
(A) In response to extracellular calcium, yeast cells initiate bursts of nuclear
localization of the transcription factor Crz1. Bottom left: A single-cell time trace
of the amount of phosphorylated Crz1 in the nucleus; the arrow indicates
introduction of extracellular calcium. Bottom right: The frequency of bursts (y
axis) rises with calcium levels (x axis). Error bars calculated by using different
thresholds for burst determination (see Cai et al., 2008). Inset: A histogram of
burst duration times under high (red) and low (blue) calcium levels indicates
that burst duration is independent of calcium concentration.
(B) Expression levels of three synthetic Crz1-dependent promoters increase
proportionally to extracellular calcium concentration (x axis). On the y axis,
data are divided, for each variant, by the expression at maximum calcium level.
The synthetic promoters have 1 (red), 2 (green), or 4 (blue) calcineurin-
dependent response elements. Inset: A bar chart showing the fold-change of
the different targets, following Crz1 overexpression. The targets exhibit
different responses, probably due to their different numbers of Crz1-binding
sites. Reproduced from Cai et al. (2008) with permission from the authors.
calcium increases, Crz1 is dephosphorylated and exhibits short

bursts of translocation to the nucleus. At higher levels of calcium,

the cells respond, not by increasing the amount of nuclear Crz1

in each translocation burst but rather by increasing the frequency

of the bursts (Figure 4A).

Such ‘‘frequency modulation’’ may be important because of

the nonlinearity (Yuh et al., 2001) and diversity (Kim et al.,

2009) of the input functions associated with different target

promoters. Because distinct Crz1 target promoters (Figure 4A)

probably respond differently to changing levels of Crz1, ampli-

tude modulation of Crz1 would not maintain their relative ratios
892 Cell 144, March 18, 2011 ª2011 Elsevier Inc.
(Figure 4B, inset). In contrast, modulation of the frequency of

Crz1’s nuclear localization can control the expression of multiple

target genes in a more proportional manner and thus maintain

more stable ratios of gene expression, regardless of the shapes

of their input functions (Figure 4B, main graph). This behavior

might be explained by the fact that a strong nonlinear compo-

nent (i.e., dependence on Crz1 magnitude) is now kept relatively

constant for different calcium levels, and the variable part is the

amount of time the promoters are exposed to a fixed amount of

nuclear Crz1.

Oscillations in the level or localization of transcription factors

have been observed in diverse environmental responses, such

as those involving NF-kB (nuclear factor K-light-chain-enhancer

of activated B cells) (Ashall et al., 2009; Covert et al., 2005; Frie-

drichsen et al., 2006; Nelson et al., 2004; Tay et al., 2010) and the

tumor suppressor p53 (Geva-Zatorsky et al., 2006; Loewer et al.,

2010) (Ashall et al., 2009; Friedrichsen et al., 2006; Nelson et al.,

2004; Tay et al., 2010) in mammals and the SOS response to

DNA damage in bacteria (Friedman et al., 2005). In the p53

and SOS systems, monitoring with high temporal resolution

revealed tightly regulated oscillations in the nuclear levels of

the key regulators (e.g., p53) with variable amplitude but more

precise timing.

Oscillations in regulatory proteins, which are driven by external

stimuli, often lead to nonoscillatory, impulse transcriptional

patterns. For example, the expression of p21, a p53-target

gene, is induced in a nonoscillatory manner during DNA damage

(Loewer et al., 2010). Similarly, oscillations in NF-kB localization

and activity following TNF-a stimulation are coupled to impulse-

like patterns in a host of early response genes, such as the NF-kB

inhibitor Ik-Ba, even when assessed at the single-cell level

(Tay et al., 2010).

Thus, protein oscillations in environmental response systems

may play a general mechanistic role in regulating downstream

impulse transcriptional changes. First, oscillation of transcription

factor levels can maintain a steady response as long as the

damage signal is present and constitutive supply of the down-

streamgeneproducts is needed (as in thep53 response). Second,

oscillations in transcription factor localization can underlie the

induction of proportional responses through frequency modula-

tion (as with Crz1). Finally, combinations of protein oscillators

can generate various transcriptional kinetic patterns. For

instance, activationofNF-kB inmouseembryofibroblasts treated

with LPS depends on two pathways, MyD88-dependent and

MyD88-independent (Covert et al., 2005). Perturbing either one

of these pathways and leaving the other one intact leads, in

both cases, to oscillatory NF-kB activity. However, when both

pathways are intact, both oscillators act upon LPS stimulation

butwitha relativephaseshift of�30min, resulting ina stable, non-

oscillatory pattern of NF-kBactivity. It is likely that other combina-

tions, as well asmodulation of both amplitude and frequency, will

play a role at encoding other complex patterns of transcriptional

regulation at single genes and gene modules.

Attenuation andOrdering of Impulse Responses through

Feedback and Cascades

Impulse patterns can be attenuated and ordered in more

complex programs and throughmore elaborate regulatory archi-

tectures, most notably within developmental programs. In



particular, in the cascade motif (Figure 2E), regulators are

ordered in layers, and proteins from one layer control ones in

subsequent layers (Hooshangi et al., 2005; Rappaport et al.,

2005). This pattern was observed in transcriptional networks

during sea urchin development (Bolouri and Davidson, 2003;

Davidson, 2009, 2010; Oliveri et al., 2008), state-transitioning

systems in microorganisms (Chu et al., 1998), and environmental

responses in mammalian cells (Amit et al., 2007a, 2009; Ramsey

et al., 2008; Shapira et al., 2009). A cascade-like network

topology entails an inherent temporal order of regulation events

(Hooshangi et al., 2005). It was postulated to enable context-

specific responses (Davidson, 2009) and to provide robustness

both to spurious input signals (Hooshangi et al., 2005) and to

noise in the rates of protein production (Rappaport et al., 2005).

Regulatory interactions between different layers in a cascade

can form multicomponent loops in which genes in a late tran-

scriptional wave regulate genes from earlier waves (Figure 2C).

The ensuing feedback effect can contribute to the ultimate atten-

uation of impulse responses, even under a sustained signal (Amit

et al., 2007b). For example, stimulation of human cell lines with

EGF induces several ordered impulse responses (Amit et al.,

2007a), including the induction of ‘‘delayed early’’ genes. De-

layed early genes are primarily induced by transcription factors

that were themselves induced as ‘‘immediate early’’ genes. De-

layed early genes encode a large number of signaling proteins

and RNA-binding proteins that attenuate RNA levels and protein

activity of the initial response pathways. Such negative tran-

scriptional feedbackmediated through a transcriptional cascade

is common in environmental responses in yeast as well

(Segal et al., 2003).

A more basic form of feedback is the autoregulatory loop by

which a transcription factor regulates its own gene. Negative au-

toregulation (Figure 2A) facilitates a rapid transcriptional

response of the autoregulating gene. It has been associated

with the induction of a rapid impulse response to EGF stimulation

in human cells (Amit et al., 2007a) and to DNA damage in E. coli

(Camas et al., 2006). Conversely, the positive autoregulatory

loop (Figure 2B) is associated with the opposite effect because

it results in a slow response time (Alon, 2007). Positive loops,

with either one or more components (Figure 2B or Figure 2C,

respectively), can lead to substantial variation between isogenic

cells, due to stochastic effects, and can play an important role in

maintaining stability after state transitioning (Davidson, 2009;

Kim et al., 2008; Macarthur et al., 2009; Oliveri et al., 2008).

Perspective
Diversemechanisms drive impulse-like changes in mRNA levels,

which can occur on a broad range of timescales, from rapid envi-

ronmental stress responses to slower andmore elaborate devel-

opmental processes. What can we learn by comparing these

processes across timescales? The emerging picture supports

a few basic principles. Just-in-time responses and sign sensi-

tivity optimize process efficiency, whereas the organization of

the impulse responses in functional waves and cascades

provides temporal compartmentalization and order to gene

expression.

Although in this Review, we have made convenient distinc-

tions between impulse responses, state transitions, and oscilla-
tors, most biological systems intertwine these temporal patterns.

For example, oscillations in protein levels or localization can also

lead to impulse responses, and ordered impulses are important

in generating sustained responses through cascades. Further-

more, many of the underlying molecular mechanisms driving

these temporal patterns can be intimately linked. For example,

a gene may be poised for transcription with a preinitiation

complex in anticipation of both developmental and environ-

mental stimuli.

Similarly, the mechanistic regulatory building blocks surveyed

here are typically embedded within a wider network context.

First, many responses, especially in metazoans, involve a large

number of inputs into a single promoter during both environ-

mental and developmental responses (Amit et al., 2009;

FANTOM consortium et al., 2009). In addition, transcriptional

cascades are often combinedwith othermotifs, such as negative

feedbacks (Amit et al., 2007a), feedforward loops (Basu et al.,

2004; Shen-Orr et al., 2002), and single-input modules (Shen-

Orr et al., 2002). Such elaborate loops (Figure 2C) and cascades

(Figure 2E) are essential to generate temporal order and stable

cell states in developmental systems (Davidson, 2009; Hoosh-

angi et al., 2005; Kim et al., 2008; Lee et al., 2002; Li et al.,

2007; Macarthur et al., 2009; Oliveri et al., 2008; Rappaport

et al., 2005). Furthermore, multiple cis-regulatory elements and

sequences affecting nucleosome positions are integrated within

more complex cis-regulatory functions in both yeasts (Gertz

et al., 2009; Raveh-Sadka et al., 2009) and metazoans (Kaplan

et al., 2009; Yuh et al., 2001; Zinzen et al., 2009).

Both computational studies and synthetic molecular circuits

(Cantone et al., 2009) have provided additional insights into the

crosstalk between motifs (Ishihara et al., 2005; Ma et al., 2004)

and into the dynamics of complex networks (Walczak et al.,

2010) that integrate multiple motifs. Nevertheless, the corre-

spondence between simple subnetworks and motifs and the

observed temporal patterns of mRNA levels (Alon, 2007; David-

son, 2009, 2010) suggests a substantial degree of modularity in

the operation of regulatory systems.

Most of the mechanisms driving mRNA concentrations

described in this Review, and that have been deciphered in detail

so far, are transcriptional, but other pathways also affect mRNA

levels, including mRNA processing, transport, and degradation.

Although recent studies (Shalem et al., 2008) suggest that such

mechanisms can play a substantial role in shaping temporal

profiles of mRNA levels, these mechanisms are still far less

understood than transcription regulation. Indeed, the scarcity

of experimental methods to monitor these processes has

hampered progress in this area. However, we anticipate that

recent advances in massively parallel cDNA sequencing (RNA-

Seq) (Mortazavi et al., 2008) will help advance this front.

More generally, deciphering circuitry and understanding the

capacity of molecular mechanisms to encode complex signals

and decode them into specific responses will require tight inte-

gration between experiments, analysis, and computation, in

particular for temporal responses. First, there is a substantial

need for direct manipulation of both signals, for example using

microfluidic devices, and of individual components, by manipu-

lation of either trans-components (Amit et al., 2009; Costanzo

et al., 2010; FANTOM consortium et al., 2009) or cis-sequences
Cell 144, March 18, 2011 ª2011 Elsevier Inc. 893



(Gertz et al., 2009; Patwardhan et al., 2009). Monitoring temporal

responses in segregating populations (Eng et al., 2010) can

provide a complementary means for testing the effect of many

simultaneous genetic perturbations. Analytical methods and

computational models can guide the design of these perturba-

tions to a search space that is maximally informative and biolog-

ically relevant. For example, sequencemodels of gene regulation

(Gertz et al., 2009; Raveh-Sadka et al., 2009) can help investiga-

torsmake relevant promoter variants to test, whereas provisional

models of trans-regulation (Amit et al., 2009) can help narrow

down targets for gene silencing or disruption.

Improving the ability to monitor a larger number of circuit

components over time in living cells is important for broadening

the scope of single-cell studies and for deepening our under-

standing of population-level phenomena observed with geno-

mics profiling technologies. Recent advances in simultaneously

monitoring in vivo multiple types of RNA (Kern et al., 1996; Muz-

zey and van Oudenaarden, 2009) or proteins (Bandura et al.,

2009) are promising. Notably, although the difference between

a single-cell and population view is a recurring theme of recent

studies, reconciling the two is important for a functional under-

standing of a response, especially in multicellular organisms

(Simon et al., 2005). For example, a recent study of the NF-kB

response to TNF-a stimulation showed that the observed cellular

heterogeneity may be optimal for achieving a functional popula-

tion (or mean) response for paracrine cytokine signaling (Paszek

et al., 2010).

Computational analysis of time course data presents several

challenging problems. These include, among others, identifying

differentially expressed genes, grouping them into clusters of

similar temporal patterns, and inferring their regulatory

interactions. Recent studies have shown that a useful algo-

rithmic starting point is to derive a continuous representation

of transcriptional profiles by fitting to a particular mathematical

function (Chechik and Koller, 2009; Storey et al., 2005). Specifi-

cally, impulse responses fit well to a certain class of sigmoid

‘‘impulse-like’’ functions, which have a small number of biologi-

cally interpretable parameters (e.g., onset time) (Chechik and

Koller, 2009; Chechik et al., 2008). The fitted continuous repre-

sentations can then be used in conjunction with the original

expression values, aiming to provide a more robust analysis,

particularly for differential expression (Storey et al., 2005) and

clustering (Chechik and Koller, 2009; Chechik et al., 2008).

Despite these advances and the vast amount of research on

the more advanced task of regulatory network inference (Bansal

et al., 2007; Karlebach andShamir, 2008), there is still much to be

accomplished. The emerging complexity of regulatory mecha-

nisms and the expected availability of more diverse and refined

temporal data leave substantial room for developing more

refined mechanistic models of gene regulation, which account

for both cis and trans elements and their integration in time.

Finally, advances in synthetic biology promise the ability not

only to manipulate biological entities but also to design systems

to aid the development and interpretation of analytical models

with increasing complexity. This would be particularly critical to

decipher the complex web of interactions and the multiplicity

of inputs that determine temporal changes in gene regulation

in living cells.
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