
ARTICLES

Combinatorial binding predicts
spatio-temporal cis-regulatory activity
Robert P. Zinzen1*, Charles Girardot1*, Julien Gagneur1*, Martina Braun1 & Eileen E. M. Furlong1

Development requires the establishment of precise patterns of gene expression, which are primarily controlled by
transcription factors binding to cis-regulatory modules. Although transcription factor occupancy can now be identified at
genome-wide scales, decoding this regulatory landscape remains a daunting challenge. Here we used a novel approach to
predict spatio-temporal cis-regulatory activity based only on in vivo transcription factor binding and enhancer activity data.
We generated a high-resolution atlas of cis-regulatory modules describing their temporal and combinatorial occupancy
during Drosophila mesoderm development. The binding profiles of cis-regulatory modules with characterized expression
were used to train support vector machines to predict five spatio-temporal expression patterns. In vivo transgenic reporter
assays demonstrate the high accuracy of these predictions and reveal an unanticipated plasticity in transcription factor
binding leading to similar expression. This data-driven approach does not require previous knowledge of transcription factor
sequence affinity, function or expression, making it widely applicable.

Gene expression states are established through the integration of sig-
nalling and transcriptional networks converging on enhancer ele-
ments, also known as cis-regulatory modules (CRMs)1,2. CRMs
integrate the input of multiple transcription factors, leading to a spe-
cific spatio-temporal output of expression3, and are therefore central
to understanding gene regulation and metazoan development.
Although there has been considerable progress in decoding individual
CRM activities4–15, it is difficult to scale these approaches to decipher
entire transcriptional networks at a genomic level. Understanding
global cis-regulatory networks requires a detailed knowledge of the
location of all developmental CRMs, a comprehensive map of their
combinatorial and temporal binding profiles and the ability to predict
their spatio-temporal activity.

Chromatin immunoprecipitation followed by either microarray
analysis (ChIP-on-chip) or sequencing enables the identification of
active CRMs in an unbiased, genome-wide and systematic manner.
For example, ChIP experiments with tissue-specific factors in the con-
text of the entire embryo16–20, or against factors in isolated tissues21,22,
have proven to be very accurate methods for identifying tissue-specific
CRMs. Many of these studies focus on the occupancy of a single factor
or a snapshot in time16,19,23,24; however, transcription factors rarely act
in isolation, but rather bind to CRMs in a combinatorial and dynamic
manner to regulate specific expression patterns. Thus, a global view of
how the combinatorial binding of transcription factors translates into
specific spatio-temporal expression patterns is still lacking.

Given the accuracy of ChIP approaches16–22, the future challenge is
to move beyond predicting the location of CRMs to rather predict
their spatio-temporal activity. A number of sequence-based models
have been applied to predict spatio-temporal activity of enhancers
during development14,25–27. These methods are very accurate when
tailored to individual CRMs14,26 or even small numbers of regulatory
modules27; however, they rely on detailed knowledge of the system,
including estimates of transcription factor concentrations, their
affinity for various sequence motifs, and cooperativity or competi-
tion between transcription factors14,26,27—data that are currently only
available for a handful of CRMs. Here we present a complementary,

data-driven approach to predict spatio-temporal CRM activity using
only transcription factor binding and in vivo activity data as input to a
machine-learning algorithm. We applied this approach to the tran-
scriptional network governing the specification of the Drosophila
mesoderm into different muscle primordia.

A high-resolution binding atlas of mesoderm development

The subdivision of the mesoderm requires the successive activation of
transcription factors whose activities result in the specification of
cardiac mesoderm (heart muscle), somatic muscle (analogous to ver-
tebrate skeletal muscle) and visceral muscle (gut muscle) primordia.
The basic helix–loop–helix factor Twist (Twi) acts as a ‘master’ regu-
lator of mesoderm development (Fig. 1a)28. Twi directly regulates the
expression of both Tinman (Tin)29, which is essential for dorsal
mesoderm specification30, and Myocyte enhancing factor 2 (Mef2),
which initiates muscle differentiation31,32. Tin in turn regulates
Bagpipe (Bap) expression13, which acts together with Biniou (Bin)
to specify the visceral muscle19,33. Although many other transcription
factors act to refine further the specification and subsequent differ-
entiation of specific muscle types, these five key transcription factors
(Fig. 1a) act as the high-level regulators of mesoderm development34,35

and therefore serve as a good entry point to generate a global atlas of
mesodermal CRMs. We previously examined the binding profiles of
these transcription factors individually16,18,19,36 but at a resolution too
low to map combinatorial binding precisely or to model CRM activity.
We therefore initiated this study by generating a high-resolution,
genome-wide map of transcription factor occupancy for these five
factors during multiple stages of mesoderm development.

ChIP-on-chip was performed on each transcription factor at
consecutive time points spanning the majority of stages when each
transcription factor is expressed, resulting in binding data for 15
developmental conditions (Fig. 1b). To minimize false positives
owing to potential off-target effects, two independent antibodies for
each transcription factor were used. The immunoprecipitated material
was hybridized to genome-wide tiling arrays and enriched regions
were identified as clusters of consecutive probes with significant

*These authors contributed equally to this work.

1European Molecular Biology Laboratory, D-69117 Heidelberg, Germany.

Vol 462 | 5 November 2009 | doi:10.1038/nature08531

65
 Macmillan Publishers Limited. All rights reserved©2009

www.nature.com/doifinder/10.1038/nature08531
www.nature.com/nature
www.nature.com/nature


signal (TileMap)37. These experiments identified thousands of high-
confidence bound regions (Supplementary Table 1), providing a
genome-wide map reflecting the location, temporal occupancy and
combinatorial binding of mesodermal transcription factors in vivo.

Clustered transcription factor binding defines CRMs

Functional transcription factor binding sites (TFBSs) typically cluster
together to form regulatory elements or CRMs; we used this property
to search for genomic regions containing clusters of ChIP-binding
peaks in close proximity. To determine an appropriate distance for
proximity we first assessed the precision of our ChIP data. As TFBSs
are generally located beneath ChIP enrichment peaks20,38,39, we com-
pared the relative location of computed ChIP peaks40 (Fig. 1c and
Methods) to previously characterized functional TFBSs, and more
globally using predicted sites. Mutagenesis analyses in three CRMs
regulating Mef2 expression identified active TFBSs for Twi, Tin and
Mef241–43 (Fig. 2a), providing a good test case to assess the ability of
ChIP peaks to pinpoint functional sites. Computed ChIP peaks were,
on average, within 50 bp of the functional TFBSs (Fig. 2a), demonstrat-
ing the high sensitivity and resolution of the data. More globally, the
absolute distance of ChIP peaks for a given transcription factor to the
closest predicted TFBS is significantly enriched within 100 bp
(Supplementary Fig. 1).

We next assessed the relative distance of transcription factor bind-
ing events for different factors at the same stage of development. ChIP
peaks for different transcription factors are positioned much closer
to each other than expected by chance (Fig. 2b and Supplementary

Fig. 2), indicating that these occupied binding sites cluster into regu-
latory modules. Given the ChIP precision of 6100 bp, we defined
CRMs as 200-bp windows centred on ChIP peaks, and combined
regions where peaks clustered into overlapping windows. The ChIP
experiments from all 15 conditions identified 19,522 high-confidence
ChIP peaks, which clustered into 8,008 regions; almost half of these
(3,713) are multi-peak regions bound by more than one transcription
factor, or by one transcription factor at more than one time point
(Supplementary Fig. 3). These computed ChIP CRMs cover 2.17 Mb
of genomic sequence, representing a 3.3-fold increase in resolution
compared to TileMap enriched regions, and have an average length of
270 bp, which is significantly smaller than what is commonly tested in
enhancer-reporter assays (Supplementary Fig. 4).

The accuracy of the ChIP-CRM atlas was assessed globally using TFBS
conservation as an indicator of regulatory function and more locally
using in vivo transgenic reporter assays. To assess conservation, we first
optimized the position weight matrices (PWMs) for the five transcrip-
tion factors (Supplementary Fig. 5, 59 and Methods). The refined PWMs
were used to search for all instances of these motifs within the Drosophila
genome. As expected, these motifs are highly enriched within ChIP
CRMs, being present within 100 bp of the ChIP peak in ,60–80% of
CRMs (Supplementary Fig. 1, blue line). Two methods were used to
globally assess TFBS conservation: first, the average PhastCons score44

across predicted TFBSs within ChIP CRMs for a given transcription
factor was compared to that of CRMs not bound by that transcription
factor to minimize general sequence biases of CRMs (Fig. 2c)20. Second,
the percentage of conserved TFBSs derived from pair-wise alignments of
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Figure 1 | Generating a high-resolution atlas of
mesodermal CRMs. a, Myogenic network of five
central transcription factors in mesoderm
specification. b, Coloured rectangular boxes
indicate consecutive 2-h time windows assayed
by ChIP-on-chip for each transcription factor.
Major events in mesoderm specification are
indicated (top) during the developmental stages
assayed (bottom). c, Data analysis workflow. Top
panel shows normalized mean log2-ratios of
ChIP-on-chip signal per transcription factor
(horizontal tracks) and time point (stacked
windows). Significantly bound regions are
calculated for all transcription factors and time
points using TileMap (shown for Twist at 2–4 h
(stages 5–7)). Peaks were calculated as extrema
(red arrow in ‘peak modelling’ inset) in selected
regions. ChIP CRMs were computed based on
peak clustering, indicated in pink.
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orthologous CRMs was compared between different Drosophila species
(Supplementary Fig. 6 and Methods). Both analyses revealed significant
TFBS conservation for all five transcription factors, suggesting that the
majority of ChIP CRMs are likely to have regulatory function (Fig. 2c
and Supplementary Fig. 6).

Notably, 35 out of 36 ChIP CRMs tested during this study are
sufficient to function as discrete regulatory modules in vivo. These
regions were selected based only on their transcription factor binding
profiles (see below), irrespective of their evolutionary conservation
or the identity of the neighbouring genes. A specific example is the
Neurotactin locus (Fig. 3a), where several transcription factors bind
within the first intron. Taking conservation as a guide, we tested a
1,200-bp region in transgenic reporter assays, which showed specific
expression in a somatic muscle subset and in the visceral muscle
(Fig. 3b). However, the ChIP-CRM atlas indicated two regulatory
modules within this region: a 350-bp CRM containing 6 ChIP peaks
(number 4725) and a 502-bp CRM containing 11 ChIP peaks (number
4726) (Fig. 3a). Testing the activities of these regions individually
demonstrates that the somatic muscle and visceral muscle expression
of the composite CRM are modular and separable, residing in CRM
number 4725 and 4726, respectively (Fig. 3b). The high precision of
the ChIP-CRM atlas can therefore define discrete regulatory units,
facilitating a global analysis of spatio-temporal activity.

CAD, a CRM activity database

Our motivation for this study was to investigate whether combina-
torial transcription factor binding is predictive of CRM activity during

tissue differentiation. To facilitate this, we collected a reference data
set of enhancers with characterized tissue-specific expression from
in vivo transgenic reporter assays. The CRM Activity Database
(CAD) (Fig. 4a) uses a controlled vocabulary to compile spatio-
temporal information about the expression driven by published
CRMs, using REDFly 2.045, literature surveys and our own experi-
ments (Supplementary Methods). The annotation was manually
reviewed on a CRM-by-CRM basis and overlapping regions were
combined, split, or eliminated. This resulted in a collection of 525
largely non-redundant CRMs, 139 of which drive expression in meso-
derm and/or muscle (Supplementary Tables 2 and 4).

As the majority of enhancers in CAD were identified in single gene
studies, the 139 CRMs provide an independent resource to assess the
sensitivity of the ChIP experiments. The ChIP-CRM atlas covers 77%
of all known mesodermal-muscle CRMs, demonstrating high sensi-
tivity and providing new insight into their temporal and combina-
torial occupancy.

Using transcription factor binding to predict expression

The intersection of CAD and the ChIP-CRM atlas identified 310 ChIP
CRMs for which both their combinatorial binding profile (ChIP atlas)
and spatio-temporal expression (CAD) are known. We used these
regions, referred to as the training set (Methods and Supplementary
Table 8), to train a machine-learning algorithm to predict CRM spatio-
temporal expression based on transcription factor binding profiles
(Fig. 4). Five exclusive expression classes were defined as groups of
CRMs with activity in specific domains, including three single-tissue
classes—the early unspecified mesoderm (‘Meso’) and two muscle
derivatives specified later in development (‘somatic muscle’ or ‘visceral
muscle’)—and two complex classes combining two expression
domains—‘Meso & somatic muscle’ or ‘visceral muscle & somatic
muscle’ (Fig. 4b, Methods and Supplementary Table 3). For each
expression class, a support vector machine (SVM) was trained to dis-
criminate between members and non-members of the class given
only transcription factor binding data. ChIP-peak heights were used
as a quantitative estimate of transcription factor occupancy (Methods).
Although differences in peak height may reflect several properties,
it provides a biochemical quantification of the enrichment of
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transcription factor binding and yields more accurate predictions than
binary transcription factor binding information (Supplementary Fig. 7
and Methods). No other information was supplied to the SVM. The
ability to accurately predict expression was assessed by a leave-one-out
cross-validation procedure (ROC curves, Methods and Supplemen-
tary Fig. 8). SVMs with tuned parameters were trained on the com-
plete training set and applied to all 8,008 ChIP CRMs for expression
prediction (Fig. 4c, Methods and Supplementary Table 9).

Combinatorial binding predicts spatio-temporal activity

The spatio-temporal activity of at least six CRMs per expression class,
selected with an SVM specificity score .95%, were tested in vivo
using transgenic reporter assays. The WC31 integrase system46 was
used to integrate stably all constructs into a common genomic locus,
eliminating positional effects. The expression pattern of the lacZ
reporter driven by the CRMs was assessed by in situ hybridization
(ISH) and CRM activity annotations were verified by fluorescent
multiplex ISH using tissue-specific markers and by an independent
expert (Fig. 5, Supplementary Figs 9a, b–13a, b, Supplementary
Table 12a, b and Supplementary Methods).

CRMs were scored as ‘correct’ if they drove expression in the
predicted tissue(s) (and in no other mesodermal tissue) and were there-
fore co-expressed with the appropriate tissue-specific markers (Sup-
plementary Fig. 9b-13b); ‘partial’ if active in one of the predicted tissues,
but other aspects of the mesodermal prediction did not hold true; or
‘fail’ if the CRM did not drive expression in any predicted tissue.
Expression in non-mesodermal tissues was disregarded, as the SVM
was not trained to discriminate against non-mesodermal expression.
Using this stringent scoring system, the SVM predictions performed
remarkably well (Supplementary Fig. 8): of the 35 individual CRMs

tested, the spatio-temporal predictions of 71.4% (25) were correct,
whereas 14.3% (5) worked partially and 14.3% (5) failed.

For example, 6 of the 7 CRMs predicted to drive expression in
‘Meso’ direct expression in the early unspecified mesoderm and not
in its derived muscle tissues, even though many transcription factors
within the ChIP-CRM atlas are expressed there (Fig. 5a and Sup-
plementary Fig. 9a, b). Similarly, 7 out of 9 ‘visceral muscle’ predic-
tions tested regulate specific expression in visceral muscle and in no
other mesodermal tissue (Fig. 5b and Supplementary Fig. 10a, b).
Interestingly, a number of these modules drive expression in distinct
visceral muscle subsets (Supplementary Fig. 10a, b), indicating input
from additional factors to refine their expression.

Importantly, the SVM could also make accurate predictions of
more complex spatio-temporal CRM expression involving tissue
combinations. In the ‘Meso & somatic muscle’ class, 5 out of 6
CRMs tested direct expression as predicted in the unspecified meso-
derm and somatic muscle, whereas the sixth CRM was partially cor-
rect, driving expression early in mesoderm, but not in somatic muscle
(Fig. 5c and Supplementary Fig. 12a, b). Similarly, for the tissue
combination class ‘visceral muscle & somatic muscle’, 5 out of 6
CRMs tested direct expression as predicted, whereas the sixth CRM
was partially correct, driving expression in visceral muscle, but not in
somatic muscle (Fig. 5d and Supplementary Fig. 13a, b).

The predictors of the somatic muscle class were less efficient at
recovering training set members in leave-one-out cross validations
(ROC plots, Supplementary Fig. 8). This was also reflected in the
experimental validation (Supplementary Fig. 11a, b): whereas expres-
sion predictions for two out of seven CRMs were correct, predictions
for another three CRMs were partially correct, showing expression in
somatic muscle and the early mesoderm (CRMs 3775 and 6051) or
visceral muscle (CRM 3775 and 6419). The poorer performance of this
class probably reflects the inherent complexity of this tissue and the
lack of known high-level regulators specific for somatic muscle
development35. To investigate this further, we compared the binding
signature of CRMs within the somatic muscle training set to that of the
top SVM predictions (Supplementary Figs 14 and 15). This revealed
enrichment in Mef2 binding and depletion in all other transcription
factors as the most prominent binding signature for somatic-muscle-
associated CRMs. As Mef2 is required for the differentiation of all
muscle types31 it serves as a weak predictor of this class. Nevertheless,
even in the absence of binding data for a somatic muscle master regu-
lator(s), the SVM can still recognize some ‘somatic muscle signature’
as only two CRMs predictions were complete ‘fails’ (Supplementary
Fig. 11a), and the predictions for the ‘visceral muscle & somatic muscle’
and ‘Meso & somatic muscle’ classes were very accurate.

Intuitively, CRMs predicted to drive highly similar expression
patterns were expected to have very similar transcription factor bind-
ing profiles. However, many CRMs with high-ranking predictions in
the same tissue have an unexpected diversity in transcription factor
occupancy (Fig. 5, Supplementary Fig. 14 and Supplementary Table 9).
To demonstrate this, the combinatorial binding profiles of tested
CRMs are displayed as ‘binding matrices’ (Fig. 5), where the intensity
of blue represents the quantitative ChIP signal (Supplementary Fig. 14).
For all classes, CRMs that drive similar spatio-temporal expression
have heterogeneous transcription factor binding profiles in terms of
(1) the identity of transcription factors occupying the CRM; (2) the
duration of binding; and (3) the intensity of the ChIP signal. For
example, three CRMs in the Meso class regulate similar expression in
the early mesoderm from stage 5–10 but have quite divergent transcrip-
tion factor binding profiles (Fig. 5a). This diversity of transcription
factor binding, which is also reflected in the training set itself (Sup-
plementary Fig. 15), argues against a stringent combinatorial binding
code and probably reflects an unequal contribution of each transcrip-
tion factor to CRM function. Although some transcription factors
may act as the key ‘switchers’ regulating tissue-specific expression
(for example, Twi in early mesoderm), other factors may serve as
‘multipliers’, fine-tuning the levels of CRM activity.
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Concluding remarks

Combinatorial binding data are often cited as revealing the regulatory
logic of CRMs. However, although binding information is an essential
prerequisite, few studies have attempted to bridge the gap from a
‘binding code’ to the actual regulatory activity. The studies that have
modelled developmental CRM activity14,26,27 used detailed physical
models that relied on extensive prior knowledge, including the bind-
ing sites within specific CRMs, transcription factor concentrations
and transcription factor-DNA affinity estimates. However, this level
of information is only available for a very limited number of systems,
such as the early patterning of the Drosophila embryo. Here we show
that combinatorial transcription factor occupancy is sufficient to pre-
dict spatio-temporal CRM activity, without the need for prior know-
ledge of the transcription factors’ expression or binding site affinities.

This data-driven approach performed with remarkable accuracy
(.70%) given that these transcription factors are expressed in over-
lapping domains, and that the tissues involved share a developmental
history (Fig. 5 and Supplementary Figs 9–13). In the majority of cases,
the SVM performed as well or better than a specialist in the field. For
example, although the SVM did not have genetic information about
the function of these transcription factors, the primary binding sig-
nature of CRMs with predicted expression in ‘Meso’ and ‘visceral
muscle’ was Twi and Bin, respectively, two key transcription factors
essential for the development of these tissues (Supplementary Fig. 8).
The observed diversity in the occupancy of CRMs regulating similar
expression (Fig. 5) questions the generally assumed stringency of
regulatory codes. A similar flexibility in regulatory architecture was

observed in enhancers regulating a cohort of 19 co-expressed genes in
Ciona47 and thus may represent an inherent property of develop-
mental cis-regulatory modules.

The predictive power of this approach will only improve as the
activity of more CRMs is tested in vivo and more transcription factor
occupancy data become available. Given the accumulation of such
data in many developmental systems, including higher vertebrates48,49,
and the robustness of SVMs to accommodate heterogeneous inputs,
this method represents a broadly applicable and accurate approach to
predict spatio-temporal enhancer expression in complex develop-
mental systems.

METHODS SUMMARY

ChIP was performed as described previously50 and hybridized to whole-genome

Affymetrix tiling arrays. CRMs were defined as neighbouring clusters of high-

confidence transcription factor binding peaks. SVMs were trained with tran-

scription factor binding profiles for five exclusive classes of CRMs with defined

activity. SVM predictions were tested using in vivo transgenic reporter assays by

in situ hybridization.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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Figure 5 | Validation of CRM spatio-temporal
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expression classes: a, Meso; b, visceral muscle;
c, Meso & somatic muscle; and d, visceral muscle
& somatic muscle. a–d, Top left: ROC plots of
SVM performance in leave-one-out cross
validations. Line colour represents SVM score
(right y axis). Top right: table summarizing all
results of testing SVM predictions. Below: CRM
activity in staged embryos, 3 CRM examples per
class. Note the lack of somatic muscle or circular
visceral muscle staining at stage 11–12 in Meso
class (a) and lack of mesoderm staining at stage
8–10 in visceral muscle (b) and visceral muscle &
somatic muscle (d) classes. The CRMs’
transcription factor (TF) binding profiles are
shown as heat maps using log2 ChIP-peak height
(Supplementary Fig. 14). Diverse patterns of
transcription factor binding lead to similar CRM
expression. ISH data for all CRMs tested are
shown in Supplementary Figs 9–13a, b.

NATURE | Vol 462 | 5 November 2009 ARTICLES

69
 Macmillan Publishers Limited. All rights reserved©2009

www.nature.com/nature


3. Arnosti, D. N. & Kulkarni, M. M. Transcriptional enhancers: Intelligent
enhanceosomes or flexible billboards? J. Cell. Biochem. 94, 890–898 (2005).

4. Small, S., Blair, A. & Levine, M. Regulation of even-skipped stripe 2 in the
Drosophila embryo. EMBO J. 11, 4047–4057 (1992).

5. Studer, M., Popperl, H., Marshall, H., Kuroiwa, A. & Krumlauf, R. Role of a
conserved retinoic acid response element in rhombomere restriction of Hoxb-1.
Science 265, 1728–1732 (1994).

6. Arnosti, D. N., Barolo, S., Levine, M. & Small, S. The eve stripe 2 enhancer employs
multiple modes of transcriptional synergy. Development 122, 205–214 (1996).

7. Halfon, M. S. et al. Ras pathway specificity is determined by the integration of
multiple signal-activated and tissue-restricted transcription factors. Cell 103,
63–74 (2000).

8. Yuh, C. H., Bolouri, H. & Davidson, E. H. Cis-regulatory logic in the endo16 gene:
switching from a specification to a differentiation mode of control. Development
128, 617–629 (2001).

9. Knirr, S. & Frasch, M. Molecular integration of inductive and mesoderm-intrinsic
inputs governs even-skipped enhancer activity in a subset of pericardial and
dorsal muscle progenitors. Dev. Biol. 238, 13–26 (2001).

10. Oliveri, P., Carrick, D. M. & Davidson, E. H. A regulatory gene network that directs
micromere specification in the sea urchin embryo. Dev. Biol. 246, 209–228
(2002).

11. Davidson, B. & Levine, M. Evolutionary origins of the vertebrate heart:
Specification of the cardiac lineage in Ciona intestinalis. Proc. Natl Acad. Sci. USA
100, 11469–11473 (2003).

12. Hadchouel, J. et al. Analysis of a key regulatory region upstream of the Myf5 gene
reveals multiple phases of myogenesis, orchestrated at each site by a
combination of elements dispersed throughout the locus. Development 130,
3415–3426 (2003).

13. Lee, H. H. & Frasch, M. Nuclear integration of positive Dpp signals, antagonistic
Wg inputs and mesodermal competence factors during Drosophila visceral
mesoderm induction. Development 132, 1429–1442 (2005).

14. Zinzen, R. P., Senger, K., Levine, M. & Papatsenko, D. Computational models for
neurogenic gene expression in the Drosophila embryo. Curr. Biol. 16, 1358–1365
(2006).

15. Rothbacher, U., Bertrand, V., Lamy, C. & Lemaire, P. A combinatorial code of
maternal GATA, Ets and b-catenin-TCF transcription factors specifies and
patterns the early ascidian ectoderm. Development 134, 4023–4032 (2007).

16. Sandmann, T. et al. A temporal map of transcription factor activity: mef2 directly
regulates target genes at all stages of muscle development. Dev. Cell 10, 797–807
(2006).

17. Zeitlinger, J. et al. Whole-genome ChIP-chip analysis of Dorsal, Twist, and Snail
suggests integration of diverse patterning processes in the Drosophila embryo.
Genes Dev. 21, 385–390 (2007).

18. Sandmann, T. et al. A core transcriptional network for early mesoderm
development in Drosophila melanogaster. Genes Dev. 21, 436–449 (2007).

19. Jakobsen, J. S. et al. Temporal ChIP-on-chip reveals Biniou as a universal regulator
of the visceral muscle transcriptional network. Genes Dev. 21, 2448–2460
(2007).

20. Li, X. Y. et al. Transcription factors bind thousands of active and inactive regions in
the Drosophila blastoderm. PLoS Biol. 6, e27 (2008).

21. Vokes, S. A., Ji, H., Wong, W. H. & McMahon, A. P. A genome-scale analysis of the
cis-regulatory circuitry underlying sonic hedgehog-mediated patterning of the
mammalian limb. Genes Dev. 22, 2651–2663 (2008).

22. Visel, A. et al. ChIP-seq accurately predicts tissue-specific activity of enhancers.
Nature 457, 854–858 (2009).

23. Davidson, E. H. The Regulatory Genome—Gene Regulatory Networks In Development
and Evolution 2nd edn (Elsevier Publishers, 2006).

24. MacArthur, S. et al. Developmental roles of 21 Drosophila transcription factors are
determined by quantitative differences in binding to an overlapping set of
thousands of genomic regions. Genome Biol. 10, R80 (2009).

25. Bintu, L. et al. Transcriptional regulation by the numbers: models. Curr. Opin.
Genet. Dev. 15, 116–124 (2005).

26. Janssens, H. et al. Quantitative and predictive model of transcriptional control of
the Drosophila melanogaster even skipped gene. Nature Genet. 38, 1159–1165
(2006).

27. Segal, E., Raveh-Sadka, T., Schroeder, M., Unnerstall, U. & Gaul, U. Predicting
expression patterns from regulatory sequence in Drosophila segmentation. Nature
451, 535–540 (2008).

28. Baylies, M. K. & Bate, M. twist: a myogenic switch in Drosophila. Science 272,
1481–1484 (1996).

29. Yin, Z., Xu, X. L. & Frasch, M. Regulation of the Twist target gene tinman by
modular cis-regulatory elements during early mesoderm development.
Development 124, 4971–4982 (1997).

30. Azpiazu, N. & Frasch, M. tinman and bagpipe: two homeo box genes that
determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev. 7 (7B),
1325–1340 (1993).

31. Bour, B. A. et al. Drosophila MEF2, a transcription factor that is essential for
myogenesis. Genes Dev. 9, 730–741 (1995).

32. Lilly, B., Galewsky, S., Firulli, A. B., Schulz, R. A. & Olson, E. N. D-MEF2: a MADS
box transcription factor expressed in differentiating mesoderm and muscle cell
lineages during Drosophila embryogenesis. Proc. Natl Acad. Sci. USA 91,
5662–5666 (1994).

33. Zaffran, S., Kuchler, A., Lee, H. H. & Frasch, M. biniou (FoxF), a central component
in a regulatory network controlling visceral mesoderm development and midgut
morphogenesis in Drosophila. Genes Dev. 15, 2900–2915 (2001).

34. Furlong, E. E. Integrating transcriptional and signalling networks during muscle
development. Curr. Opin. Genet. Dev. 14, 343–350 (2004).

35. Sink, H. Muscle Development in Drosophila (Birkhäuser, 2006).
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METHODS
ChIP-on-chip assays. For each transcription factor and time point, two inde-

pendent chromatin immunoprecipitations (ChIPs) were performed using two

different antibodies and compared to two independent mock ChIPs using rabbit

pre-immune sera (Supplementary Methods). ChIPs were optimized by assaying

for enrichment of a known binding site using real-time PCR as previously

described50, amplified and hybridized to Affymetrix GeneChip Drosophila

Tiling array1.0R (Supplementary Methods).

Detection of transcription-factor-bound regions and peaks. All bioinformatics

analyses were done using BDGP Drosophila melanogaster genome version 4 (UCSC

dm2)51 and the Flybase 4.3 genome annotation release52. Mapping of the

Affymetrix GeneChip Drosophila Tiling 1.0R probes to the genome was obtained

from the MAT website (http://liulab.dfci.harvard.edu/MAT/). Quantile normali-

zation53 was applied to the four data sets (two ChIP experiments, two mock

controls) for each of the fifteen conditions. Significantly enriched genomic regions

at each condition were identified as consecutive probes with significantly positive

log-ratios of experiment over control using a Hidden Markov Model (HMM)-

based algorithm (TileMap37). A cutoff on the probe-wise maximum a posteriori

probability of each region returned by the HMM was determined manually for

each data set (Supplementary Table 1). The top 5% regions below cutoff exhibiting

more than 75% overlap with one or more above cutoff region (at any of the 15

conditions) were rescued and included in the final ‘high-confidence’ transcription

factor binding profile. For each enriched region, probe intensity peaks were

identified as extrema on a smoothed curve of the log2-ratio signal40. This ‘peak

height’ was used as a quantitative measure of transcription factor enrichment.

Enrichment of ChIP peaks near motifs or other peaks. Enrichment for proximal

genomic distances was assessed for (1) distances of transcription factor binding

peaks to their closest PWM match (Supplementary Fig. 1) and (2) distances of

transcription factor binding peaks in one condition to the closest peak in another

condition (for example, distances of Twist binding peaks at 4–6 h to the closest

Twist binding peak at 2–4 h, see Supplementary Fig. 2 and Fig. 2b). The back-

ground distribution of distances was derived assuming uniform distribution over

the merged TileMap regions (that is, significantly enriched regions covered by the

tiling array). Enrichment over background was defined as the ratio of the fre-

quency in the data set over background frequency and was robustly estimated

using a moving average with a 30-bp window. Equi-tailed 95% confidence inter-

vals of the enrichment were estimated by re-sampling 1,000 times the observed

distances, with replacement.

Computing ChIP CRMs from ChIP peaks. ChIP peaks across all conditions

were clustered using a neighbour joining approach with a maximum distance of

200 bp between adjacent peaks. Peak cluster boundaries were extended by 100 bp

past the terminal peak position on each side to account for peak position pre-

cision. Resulting genomic boundaries define the ChIP CRMs of the ChIP-CRM

atlas (Supplementary Table 5).

Iterative position weight matrix optimization. Initial position weight matrices

(PWMs) were gathered either from the literature or by de novo motif discovery

using the software RSAT54 and GAPWM55 (Supplementary Methods). Positive

genomic regions were defined as 200-bp regions centred on ChIP peaks. PWMs

were iteratively updated, taking as binding sites the best hits predicted by the PWM

of the previous iteration within relevant positive regions. In computing PWMs,

binding sites were weighted by their peak height, giving more importance to peaks

with stronger signal. To assess sensitivity and specificity, negative regions were

randomly chosen from the repeat-masked genome (excluding exons and bound

regions as defined by TileMap), matching the positive regions in number and

length. Binding site predictions were generated using Patser56. For a given score

cutoff, a region was regarded as ‘positive’ if it contains at least one match above

cutoff (ROC curves, Supplementary Fig. 5). Final predictions were performed at a

score cutoff corresponding to an estimated 40% false discovery rate.

Conservation of TFBS within bound regions. For each transcription factor,

ChIP CRMs were split into two groups: a group containing ChIP CRMs bound

by the considered transcription factor and a group containing ChIP CRMs not

bound by that transcription factor. The latter was used as ‘background’ regions to

control for general sequence biases in ChIP CRMs, such as GC content. In addi-

tion, random CRM sets matching the transcription-factor-bound regions in

number and length were generated by sampling from the repeat-masked genome

(excluding exons and bound regions as defined by TileMap). TFBSs were pre-

dicted as described above. Conservation of TFBSs was evaluated in two ways. First,

the average of the PhastCons44 score (dm2/phastCons15way from UCSC, http://

hgdownload.cse.ucsc.edu/goldenPath/dm3/phastCons15way/) over the bases of

the TFBS was computed for either the best scoring TFBS prediction (Fig. 2c) or all

TFBS predictions in each CRM (Supplementary Fig. 6a). Second, pair-wise align-

ments between D. melanogaster (dm2) and D. simulans (droSim1), D. yakuba

(droYak1), D. ananassae (droAna1), D. pseudoobscura (dp3) and D. virilis

(droVir1) were obtained from UCSC (http://hgdownload.cse.ucsc.edu/

downloads.html#fruitfly). Best scoring TFBS predictions (Supplementary Fig.

6b–f) for each ChIP CRM and for each random CRM were used to extract the

corresponding sequence from each pair-wise alignment (ungapped alignments

only). A TFBS prediction was scored as ‘conserved’ in a particular species if its

aligned sequence triggered a match scoring above cutoff (as defined earlier, see

Supplementary Fig. 5), or was otherwise scored as ‘not conserved’ (unaligned

TFBSs were also counted as ‘not conserved’).

Compiling the CRM Activity Database (CAD). The CRM Activity Database

(CAD) compiles in vivo Drosophila melanogaster enhancer expression data from

REDFly 2.045, literature surveys and our own experiments. CAD is the result of a

semi-automated procedure whereby (1) each enhancer activity is manually

reviewed and (2) redundancy within and across data sources is eliminated. We

reviewed original literature and enhancer expression pattern images and added

missing annotations (using the Drosophila gross anatomy ontology, http://

www.obofoundry.org/), focusing on mesoderm and muscle subset expression.

We then manually assessed redundancy of overlapping enhancers; in particular,

we minimized enhancer boundaries where possible (overlapping enhancers of

varying sizes with indistinguishable activities as assayed) and merged enhancers

where necessary (extensively overlapping enhancers having distinct activities).

Overlapping enhancers not falling into these two categories were left unmodified.

Supplementary Table 4 provides all final CAD entries and references to the

original enhancers.

Defining mesodermal and muscle expression patterns. While generating CAD,

we analysed the expression patterns driven by previously characterized CRMs

and annotated them using the Drosophila gross anatomy ontology (http://

www.obofoundry.org/), describing the timing and location of expression.

Particular attention was paid to expression in the presumptive and unspecified

mesoderm (Meso, stage 5–9), and in 3 of its major derivatives (stage 10

onwards)—somatic musculature (SM), visceral musculature (VM), and heart

musculature (CM)35. To define mesodermal and muscle expression classes, the

anatomical vocabulary of CRMs in CAD was mapped to four high-level master

terms: ‘Meso’, ‘SM’, ‘VM’ and ‘CM’ (Supplementary Table 3). VM-annotated

CRMs show expression in circular trunk visceral muscle and/or foregut and

hindgut visceral muscle. As the development of longitudinal visceral muscle

(lVM) is regulated by transcription factors not included in our data sets,

CRMs regulating lVM expression were not annotated as ‘VM’.

The CRM training set. The training set consisted of 310 computed ChIP CRMs

that overlap 250 annotated enhancers in CAD (Supplementary Table 8). We

restricted this study to combinatorial expression classes that contained at least

9 positive CRMs: ‘Meso’ only, ‘SM’ only, ‘VM’ only, ‘VM & SM’ and ‘Meso &

SM’. These expression classes are mutually exclusive. To be included in the

training set for ‘Meso’, ‘VM’, ‘SM’, ‘Meso & SM’ and ‘VM & SM’ the CRM

had to drive expression in the specific tissue(s), or in subdomains of the tissue(s),

at one or more stages of development. CRMs were included that drive expression

in the defined expression class, regardless of expression in additional tissues (that

is, outside Meso, visceral muscle, somatic muscle and heart musculature), such

as ectoderm.

SVM parameter selection. We used support vector machines (SVM) with a

radial basis function kernel, which requires setting two parameters, the penaliza-

tion coefficient C and the kernel precision c. Optimal parameter setting was

achieved by evaluating the performance for several parameter values.

Performance of each SVM was evaluated using the area under the curve

(AUC) of receiver operating characteristic (ROC) curves obtained with a

leave-one-out cross-validation scheme (Supplementary Information and

Supplementary File 1). Sensitivity and specificity functions were smoothed using

Gaussian kernel density estimates57. Once optimal parameters were identified, a

final SVM was trained on the full training set and then applied to the full ChIP-

CRM atlas. SVM scores and specificity levels for the 8,008 CRMs of the atlas, and

for each expression class, are provided in Supplementary Table 9. For each ChIP

CRM, we predicted expression if its SVM score corresponded to a specificity

greater than 95% in a given expression class. In cases where CRMs scored with

higher than 95% specificity in more than one class, we predicted expression

corresponding to the class of higher specificity.

Transgenic reporter assays. To assay ChIP CRMs for enhancer activity, the

genomic regions were placed in front of a minimal promoter driving a lacZ

reporter gene in pDuo2n-attB (Supplementary Information). All constructs

were targeted to chromosomal position 51C via attB/phiC31 mediated integ-

ration46. Transgenic lines were balanced, homozygosed and tested by in situ

hybridization (ISH). lacZ ISH was performed either colorimetrically, or fluor-

escently while co-visualizing appropriate marker genes. No reporter gene activity

was detected for an empty vector integrated into that genomic position.

Scoring CRM activity in transgenic reporter assays. Colorimetric lacZ ISH at all

stages of embryogenesis were performed to annotate expression patterns driven

doi:10.1038/nature08531
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by the CRMs (Fig. 5, Supplementary Figs 9a–13a and Supplementary Methods).
Annotated CRM activities are compiled in Supplementary Table 12a, b. Two

approaches were taken to confirm the tissue-specific activity of all CRMs.

First, we confirmed all lacZ reporter-based annotations using multiplex fluor-

escent ISH followed by confocal imaging. ISHs were performed using antisense

probes against appropriate tissue-specific markers (Supplementary Methods),

which were imaged in green (mesoderm and visceral muscle), or blue (somatic

muscle), together with a probe directed against the lacZ reporter driven by the

CRM (red). Overlapping lacZ and marker gene expression unequivocally

demonstrates tissue-specific CRM activity (Supplementary Figs 9b–13b). The

CRMs were annotated as driving expression in a tissue if the expression of the

lacZ reporter overlapped with that of the marker gene specific for that tissue at

any stage of development (Supplementary Table 12a).

Second, we asked an external expert on Drosophila mesoderm and muscle

development to annotate the CRMs’ expression independently (M. Leptin,

Institute of Genetics, University of Cologne). M. Leptin was presented with

the same embryo pictures shown in Supplementary Figs 9–13, but ordered by

increasing CRM ID number and without any information about the respective

predictions (Supplementary Information and Supplementary Table 12b).

CRMs were scored as correct SVM predictions if they drove expression within

the predicted tissue (or a subregion of that tissue) at any stage of development

and therefore show co-expression with the specific tissue marker. CRMs that
drove expression in the predicted tissue, but also in another unpredicted meso-

derm tissue, were scored as partial. For the two combinatorial expression classes

(Meso & SM and VM & SM), CRMs that only drove expression in one of the two

predicted tissues were also scored as partial. CRMs were scored as fail if their

expression did not overlap marker gene expression as predicted by the SVM.
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