Read Chapter 11 in Linz.

Definition: A language L is *recursively enumerable* if there exists a TM M such that $L = L(M)$.

Definition: A language L is *recursive* if there exists a TM M such that $L = L(M)$ and M halts on every $w \in \Sigma^+$.

Enumeration procedure for recursive languages

To enumerate all $w \in \Sigma^+$ in a recursive language L:

- Let M be a TM that recognizes L, $L = L(M)$.
- Construct 2-tape TM M'
 - Tape 1 will enumerate the strings in Σ^+
 - Tape 2 will enumerate the strings in L.

 - On tape 1 generate the next string v in Σ^+
 - simulate M on v
 - if M accepts v, then write v on tape 2.
Enumeration procedure for recursively enumerable languages

To enumerate all \(w \in \Sigma^+ \) in a recursively enumerable language \(L \):

Repeat forever

- Generate next string (Suppose \(k \) strings have been generated: \(w_1, w_2, \ldots, w_k \))
- Run \(M \) for one step on \(w_k \)
 - Run \(M \) for two steps on \(w_{k-1} \).
 - ...
 - Run \(M \) for \(k \) steps on \(w_1 \).
 - If any of the strings are accepted then write them to tape 2.

Theorem Let \(S \) be an infinite countable set. Its powerset \(2^S \) is not countable.

Proof - Diagonalization

- \(S \) is countable, so it’s elements can be enumerated.
 \(S = \{ s_1, s_2, s_3, s_4, s_5, s_6, \ldots \} \)
 An element \(t \in 2^S \) can be represented by a sequence of 0’s and 1’s such that the \(i \)th position in \(t \) is 1 if \(s_i \) is in \(t \), 0 if \(s_i \) is not in \(t \).

 Example, \(\{ s_2, s_3, s_5 \} \) represented by

 Example, set containing every other element from \(S \), starting with \(s_1 \) is \(\{ s_1, s_3, s_5, s_7, \ldots \} \) represented by

 Suppose \(2^S \) countable. Then we can enumerate all its elements: \(t_1, t_2, \ldots \).

<table>
<thead>
<tr>
<th>(t_1)</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
<th>(s_7)</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(\ldots)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(\ldots)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>(\ldots)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(\ldots)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(\ldots)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(\ldots)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\ldots)</td>
<td></td>
</tr>
<tr>
<td>(\ldots)</td>
<td></td>
</tr>
</tbody>
</table>
Theorem For any nonempty Σ, there exist languages that are not recursively enumerable.

Proof:

- A language is a subset of Σ^*.

 The set of all languages over Σ is

Theorem There exists a recursively enumerable language L such that \overline{L} is not recursively enumerable.

Proof:

- Let $\Sigma = \{a\}$

 Enumerate all TM's over Σ:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>aa</th>
<th>aaa</th>
<th>aaaa</th>
<th>aaaaa</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(M_1)$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_2)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_3)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_4)$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_5)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The next two theorems in conjunction with the previous theorem will show that there are some languages that are recursively enumerable, but not recursive.

Theorem If languages L and \bar{L} are both RE, then L is recursive.

Proof:

- There exists an M_1 such that M_1 can enumerate all elements in L.
- There exists an M_2 such that M_2 can enumerate all elements in \bar{L}.
- To determine if a string w is in L or not in L perform the following algorithm:

Theorem: If L is recursive, then \bar{L} is recursive.

Proof:

- L is recursive, then there exists a TM M such that M can determine if w is in L or w is not in L. M outputs a 1 if a string w is in L, and outputs a 0 if a string w is not in L.
- Construct TM M' that does the following. M' first simulates TM M. If TM M halts with a 1, then M' erases the 1 and writes a 0. If TM M halts with a 0, then M' erases the 0 and writes a 1.

Hierarchy of Languages:
Definition A grammar $G=(V,T,S,P)$ is *unrestricted* if all productions are of the form

$$u \rightarrow v$$

where $u \in (V \cup T)^+$ and $v \in (V \cup T)^*$

Example:

Let $G=\{S,A,X\},\{a,b\},S,P$,

$$P=\begin{align*}
 S &\rightarrow bAaX \\
 bAa &\rightarrow abA \\
 AX &\rightarrow \lambda
\end{align*}$$

Example Find an unrestricted grammar G s.t. $L(G)=\{a^n b^n c^n | n > 0\}$

$G=(V,T,S,P)$

$V=\{S,A,B,D,E,X\}$

$T=\{a,b,c\}$

$P=\begin{align*}
 1) &\quad S \rightarrow AX \\
 2) &\quad A \rightarrow aAbc \\
 3) &\quad A \rightarrow aBbc \\
 4) &\quad Bb \rightarrow bB \\
 5) &\quad Bc \rightarrow D \\
 6) &\quad Dc \rightarrow cD \\
 7) &\quad Db \rightarrow bD \\
 8) &\quad DX \rightarrow EXc
\end{align*}$

There are some rules missing in the grammar.

To derive string aaabbcc, use productions 1,2 and 3 to generate a string that has the correct number of a's b's and c's. The a's will all be together, but the b's and c's will be intertwined.

$$S \Rightarrow AX \Rightarrow aAbcX \Rightarrow aaAbcXcX \Rightarrow aaaBbcBCcX$$
Theorem If G is an unrestricted grammar, then L(G) is recursively enumerable.

Proof:

- List all strings that can be derived in one step.

 List all strings that can be derived in two steps.

Theorem If L is recursively enumerable, then there exists an unrestricted grammar G such that L=L(G).

Proof:

- L is recursively enumerable.
 \[\Rightarrow\] there exists a TM M such that L(M)=L.

 \[M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)\]

 \[q_0w \xrightarrow{*} x_1q_fx_2\text{ for some } q_f \in F, x_1, x_2 \in \Gamma^*\]

 Construct an unrestricted grammar G s.t. L(G)=L(M).

 \[S \xrightarrow{*} w\]

 Three steps

 1. \[S \xrightarrow{*} B \ldots B \#x_1q_yB \ldots B\]

 with \(x, y \in \Gamma^*\) for every possible combination

 2. \[B \ldots B \#x_1q_yB \ldots B \xrightarrow{*} B \ldots B \#q_0wB \ldots B\]

 3. \[B \ldots B \#q_0wB \ldots B \xrightarrow{*} w\]
Definition A grammar G is context-sensitive if all productions are of the form

\[x \rightarrow y \]

where \(x, y \in (V \cup T)^+ \) and \(|x| \leq |y| \)

Definition L is context-sensitive (CSL) if there exists a context-sensitive grammar G such that \(L = L(G) \) or \(L = L(G) \cup \{\lambda\} \).

Theorem For every CSL L not including \(\lambda \), \(\exists \) an LBA M s.t. \(L = L(M) \).

Theorem If L is accepted by an LBA M, then \(\exists \) CSG G s.t. \(L(M) = L(G) \).

Theorem Every context-sensitive language L is recursive.

Theorem There exists a recursive language that is not CSL.