Methods for Transforming Grammars (Read Ch 6 in Linz Book)

We will consider CFL without \(\lambda \). It would be easy to add \(\lambda \) to any grammar by adding a new start symbol \(S_0 \),

\[
S_0 \rightarrow S \mid \lambda
\]

Theorem (Substitution) Let \(G \) be a CFG. Suppose \(G \) contains

\[
A \rightarrow x_1 B x_2
\]

where \(A \) and \(B \) are different variables, and \(B \) has the productions

\[
B \rightarrow y_1 | y_2 | \ldots | y_n
\]

Then can construct \(G' \) from \(G \) by deleting

\[
A \rightarrow x_1 B x_2
\]

from \(P \) and adding to it

\[
A \rightarrow x_1 y_1 x_2 | x_1 y_2 x_2 | \ldots | x_1 y_n x_2
\]

Then, \(L(G) = L(G') \).

Example:

\[
S \rightarrow aBa
\]

becomes

\[
B \rightarrow aS \mid a
\]

Definition: A production of the form \(A \rightarrow Ax, A \in V, x \in (V \cup T)^* \) is left recursive.
Example Previous expression grammar was left recursive.

\[
\begin{align*}
E & \rightarrow E + T \mid T \\
T & \rightarrow T * F \mid F \\
F & \rightarrow I \mid (E) \\
I & \rightarrow a \mid b
\end{align*}
\]

A top-down parser would want to derive the leftmost terminal as soon as possible. But in the left recursive grammar above, in order to derive a sentential form that has the leftmost terminal, we have to derive a sentential form that has other terminals in it.

Derivation of \(a+b+a+a\) is:

\[
E \Rightarrow E + T \Rightarrow E + T + T \Rightarrow E + T + T + T \Rightarrow a + T + T + T
\]

We will eliminate the left recursion so that we can derive a sentential form with the leftmost terminal and no other terminals.

Theorem (Removing Left recursion) Let \(G=(V,T,S,P)\) be a CFG. Divide productions for variable \(A\) into left-recursive and non left-recursive productions:

\[
\begin{align*}
A & \rightarrow A_1 x_1 \mid A_2 x_2 \mid \ldots \mid A_n x_n \\
A & \rightarrow y_1 y_2 \ldots y_m
\end{align*}
\]

where \(x_i, y_i\) are in \((V \cup T)^*\).

Then \(G'=(V \cup \{Z\}, T, S, P')\) and \(P'\) replaces rules of form above by

\[
\begin{align*}
A & \rightarrow y_i z, i=1, 2, \ldots, m \\
Z & \rightarrow x_i z, i=1, 2, \ldots, n
\end{align*}
\]

Example:

\[
\begin{align*}
E & \rightarrow E + T | T \quad \text{becomes} \\
T & \rightarrow T * F | F \quad \text{becomes}
\end{align*}
\]

Now, Derivation of \(a+b+a+a\) is:
Useless productions

\[
\begin{align*}
S & \rightarrow aB \mid bA \\
A & \rightarrow aA \\
B & \rightarrow Sa \\
C & \rightarrow cBc \mid a \\
\end{align*}
\]

What can you say about this grammar?

Theorem (useless productions) Let G be a CFG. Then \(\exists G' \) that does not contain any useless variables or productions s.t. \(L(G) = L(G') \).

To Remove Useless Productions:

Let \(G = (V,T,S,P) \).

I. Compute \(V_1 = \{ \text{Variables that can derive strings of terminals} \} \)

1. \(V_1 = \emptyset \)
2. Repeat until no more variables added
 - For every \(A \in V \) with \(A \rightarrow x_1x_2 \ldots x_n, \ x_i \in (T^* \cup V_1) \), add \(A \) to \(V_1 \)
3. \(P_1 = \) all productions in \(P \) with symbols in \((V_1 \cup T)^* \)

Then \(G_1 = (V_1,T,S,P_1) \) has no variables that can’t derive strings.

II. Draw Variable Dependency Graph

For \(A \rightarrow xBy \), draw \(A \rightarrow B \).

Remove productions for \(V \) if there is no path from \(S \) to \(V \) in the dependency graph. Resulting Grammar \(G' \) is s.t. \(L(G) = L(G') \) and \(G' \) has no useless productions.

Example:

\[
\begin{align*}
S & \rightarrow aB \mid bA \\
A & \rightarrow aA \\
B & \rightarrow Sa \mid b \\
C & \rightarrow cBc \mid a \\
D & \rightarrow bCb \\
E & \rightarrow Aa \mid b \\
\end{align*}
\]
Theorem (remove λ productions) Let G be a CFG with λ not in $L(G)$. Then \exists a CFG G' having no λ-productions s.t. $L(G)=L(G')$.

To Remove λ-productions

1. Let $V_n = \{ A \mid \exists \text{ production } A \to \lambda \}$
2. Repeat until no more additions
 - if $B \to A_1 A_2 \ldots A_m$ and $A_i \in V_n$ for all i, then put B in V_n
3. Construct G' with productions P' s.t.
 - if $A \to x_1 x_2 \ldots x_m \in P$, $m \geq 1$, then put all productions formed when x_j is replaced by λ (for all $x_j \in V_n$) s.t. $|\text{rhs}| \geq 1$ into P'.

Example:

\[
\begin{align*}
S & \to Ab \\
A & \to BCB \mid Aa \\
B & \to b \mid \lambda \\
C & \to cC \mid \lambda
\end{align*}
\]
Definition Unit Production

\[A \rightarrow B \]

where \(A, B \in V \).

Consider removing unit productions:

Suppose we have

\[
\begin{align*}
A & \rightarrow B \\
B & \rightarrow a | ab
\end{align*}
\]

But what if we have

\[
\begin{align*}
A & \rightarrow B \\
B & \rightarrow C \\
C & \rightarrow A
\end{align*}
\]

Theorem (Remove unit productions) Let \(G=(V,T,S,P) \) be a CFG without \(\lambda \)-productions. Then \(\exists \) CFG \(G'=(V',T',S,P') \) that does not have any unit-productions and \(L(G)=L(G') \).

To Remove Unit Productions:

1. Find for each \(A \), all \(B \) s.t. \(A \Rightarrow B \) (Draw a dependency graph)
2. Construct \(G'=(V',T',S,P') \) by

 (a) Put all non-unit productions in \(P' \)

 (b) For all \(A \Rightarrow B \) s.t. \(B \rightarrow y_1 | y_2 | \ldots | y_n \in P' \), put \(A \rightarrow y_1 | y_2 | \ldots | y_n \in P' \)
Example:

S → AB
A → B
B → C | Bb
C → A | c | Da
D → A

Theorem Let L be a CFL that does not contain \(\lambda \). Then \(\exists \) a CFG for L that does not have any useless productions, \(\lambda \)-productions, or unit-productions.

Proof

1. Remove \(\lambda \)-productions
2. Remove unit-productions
3. Remove useless productions

Note order is very important. Removing \(\lambda \)-productions can create unit-productions! QED.
Definition: A CFG is in Chomsky Normal Form (CNF) if all productions are of the form

\[A \rightarrow BC \quad \text{or} \quad A \rightarrow a \]

where \(A, B, C \in V \) and \(a \in T \).

Theorem: Any CFG \(G \) with \(\lambda \) not in \(L(G) \) has an equivalent grammar in CNF.

Proof:

1. Remove \(\lambda \)-productions, unit productions, and useless productions.
2. For every rhs of length > 1, replace each terminal \(x_i \) by a new variable \(C_j \) and add the production \(C_j \rightarrow x_i \).
3. Replace every rhs of length > 2 by a series of productions, each with rhs of length 2. QED.

Example:

\[
\begin{align*}
S & \rightarrow CBcd \\
B & \rightarrow b \\
C & \rightarrow Cc \mid e
\end{align*}
\]
Definition: A CFG is in Greibach normal form (GNF) if all productions have the form

\[A \rightarrow ax \]

where \(a \in T \) and \(x \in V^* \)

Theorem For every CFG \(G \) with \(\lambda \) not in \(L(G) \), \(\exists \) a grammar in GNF.

Proof:

1. Rewrite grammar in CNF.
2. Relabel Variables \(A_1, A_2, \ldots A_n \)
3. Eliminate left recursion and use substitution to get all productions into the form:

\[
A_i \rightarrow A_jx_j, \ j > i \\
Z_i \rightarrow A_jx_j, \ j \leq n \\
A_i \rightarrow ax_i
\]

where \(a \in T \), \(x_i \in V^* \), and \(Z_i \) are new variables introduced for left recursion.

4. All productions with \(A_n \) are in the correct form, \(A_n \rightarrow ax_n \). Use these productions as substitutions to get \(A_{n-1} \) productions in the correct form. Repeat with \(A_{n-2}, A_{n-3} \), etc until all productions are in the correct form.