Methods for Transforming Grammars

We will consider CFL without λ. It would be easy to add λ to any grammar by adding a new start symbol S_0,

$$S_0 \rightarrow S \mid \lambda$$
Theorem (Substitution) Let G be a CFG. Suppose G contains

\[A \rightarrow x_1Bx_2 \]

where A and B are different variables, and B has the productions

\[B \rightarrow y_1 \mid y_2 \mid \ldots \mid y_n \]

Then can construct G’ from G by deleting

\[A \rightarrow x_1Bx_2 \]

from P and adding to it

\[A \rightarrow x_1y_1x_2 \mid x_1y_2x_2 \mid \ldots \mid x_1y_nx_2 \]

Then, \(L(G) = L(G’) \).
Example:

\[
S \rightarrow aBa \\
B \rightarrow aS \mid a
\]

Definition: A production of the form $A \rightarrow Ax$, $A \in V$, $x \in (V \cup T)^*$ is left recursive.
Example Previous expression grammar was left recursive.

\[
\begin{align*}
E & \rightarrow E + T \mid T \\
T & \rightarrow T * F \mid F \\
F & \rightarrow I \mid (E) \\
I & \rightarrow a \mid b
\end{align*}
\]

Derivation of \(a+b+a+a\) is:

\[
\begin{align*}
E & \Rightarrow E + T \Rightarrow E + T + T \Rightarrow E + T + T + T \\
& \Rightarrow a + T + T + T
\end{align*}
\]
Theorem (Removing Left recursion)
Let $G=(V,T,S,P)$ be a CFG. Divide productions for variable A into left-recursive and non left-recursive productions:

\[
A \rightarrow A_1 | A_2 | \ldots | A_n
\]

\[
A \rightarrow y_1 | y_2 | \ldots | y_m
\]

where x_i, y_i are in $(V \cup T)^*$.

Then $G'=(V \cup \{Z\}, T, S, P')$ and P' replaces rules of form above by

\[
A \rightarrow y_i | y_i Z, \ i=1,2,\ldots,m
\]

\[
Z \rightarrow x_i | x_i Z, \ i=1,2,\ldots,n
\]
Example:

\[E \rightarrow E + T | T \]

becomes

\[T \rightarrow T * F | F \]

becomes

Now, Derivation of \(a + b + a + a \) is:
Useless productions

$$S \rightarrow aB \mid bA$$

$$A \rightarrow aA$$

$$B \rightarrow Sa$$

$$C \rightarrow cBc \mid a$$

What can you say about this grammar?

Theorem (useless productions) Let G be a CFG. Then $\exists G'$ that does not contain any useless variables or productions s.t. $L(G)=L(G')$.
To Remove Useless Productions:
Let $G = (V, T, S, P)$.

I. Compute $V_1 = \{\text{Variables that can derive strings of terminals}\}$

1. $V_1 = \emptyset$

2. Repeat until no more variables added
 * For every $A \in V$ with $A \rightarrow x_1 x_2 \ldots x_n$, $x_i \in (T^* \cup V_1)$, add A to V_1

3. $P_1 = \text{all productions in } P \text{ with symbols in } (V_1 \cup T)^*$

Then $G_1 = (V_1, T, S, P_1)$ has no variables that can’t derive strings.
II. Draw Variable Dependency Graph

For $A \rightarrow xBy$, draw $A \rightarrow B$.

Remove productions for V if there is no path from S to V in the dependency graph. Resulting Grammar G' is s.t. $L(G) = L(G')$ and G' has no useless productions.
Example:

\[
\begin{align*}
S & \rightarrow aB \mid bA \\
A & \rightarrow aA \\
B & \rightarrow Sa \mid b \\
C & \rightarrow cBc \mid a \\
D & \rightarrow bCb \\
E & \rightarrow Aa \mid b
\end{align*}
\]
Theorem (remove λ productions) Let G be a CFG with λ not in L(G). Then ∃ a CFG G’ having no λ-productions s.t. L(G)=L(G’).

To Remove λ-productions

1. Let \(V_n = \{ A \mid \exists \text{ production } A \rightarrow \lambda \} \)

2. Repeat until no more additions
 • if \(B \rightarrow A_1A_2\ldots A_m \) and \(A_i \in V_n \) for all \(i \), then put \(B \) in \(V_n \)

3. Construct G’ with productions P’ s.t.
 • If \(A \rightarrow x_1x_2\ldots x_m \in P, m \geq 1 \), then put all productions formed when \(x_j \) is replaced by \(\lambda \) (for all \(x_j \in V_n \)) s.t. \(|\text{rhs}| \geq 1\) into \(P' \).
Example:

\[S \rightarrow Ab \]
\[A \rightarrow BCB \mid Aa \]
\[B \rightarrow b \mid \lambda \]
\[C \rightarrow cC \mid \lambda \]
Definition Unit Production

\[A \rightarrow B \]

where \(A, B \in V \).

Consider removing unit productions:

Suppose we have

\[A \rightarrow B \]
\[B \rightarrow a \mid ab \]

But what if we have

\[A \rightarrow B \] becomes
\[B \rightarrow C \]
\[C \rightarrow A \]
Theorem (Remove unit productions)
Let $G=(V, T, S, P)$ be a CFG without λ-productions. Then \exists CFG $G’=(V’, T’, S, P’)$ that does not have any unit-productions and $L(G)=L(G’)$.

To Remove Unit Productions:

1. Find for each A, all B s.t. $A \Rightarrow^* B$
 (Draw a dependency graph)
2. Construct $G’=(V’, T’, S, P’)$ by
 (a) Put all non-unit productions in $P’$
 (b) For all $A \Rightarrow^* B$ s.t. $B\rightarrow y_1 | y_2 | \ldots y_n \in P’$, put $A\rightarrow y_1 | y_2 | \ldots y_n \in P’$
Example:

S → AB
A → B
B → C | Bb
C → A | c | Da
D → A
Theorem Let L be a CFL that does not contain λ. Then \exists a CFG for L that does not have any useless productions, λ-productions, or unit-productions.

Proof

1. Remove λ-productions
2. Remove unit-productions
3. Remove useless productions

Note order is very important. Removing λ-productions can create unit-productions! QED.
Definition: A CFG is in Chomsky Normal Form (CNF) if all productions are of the form

[A \rightarrow BC \quad \text{or} \quad A \rightarrow a]

where A, B, C \in V and a \in T.

Theorem: Any CFG G with \lambda not in L(G) has an equivalent grammar in CNF.

Proof:

1. Remove \lambda-productions, unit productions, and useless productions.

2. For every rhs of length > 1, replace each terminal \(x_i \) by a new variable \(C_j \) and add the production \(C_j \rightarrow x_i \).

3. Replace every rhs of length > 2 by a series of productions, each with rhs of length 2. QED.
Example:

\[S \rightarrow CBcd \]
\[B \rightarrow b \]
\[C \rightarrow Cc \mid e \]
Definition: A CFG is in Greibach normal form (GNF) if all productions have the form

$$A \rightarrow ax$$

where $a \in T$ and $x \in V^*$

Theorem For every CFG G with λ not in $L(G)$, \exists a grammar in GNF.

Proof:

1. Rewrite grammar in CNF.
2. Relabel Variables $A_1, A_2, \ldots A_n$
3. Eliminate left recursion and use substitution to get all productions into the form:

\[
\begin{align*}
A_i & \rightarrow A_j x_j, \ j > i \\
Z_i & \rightarrow A_j x_j, \ j \leq n \\
A_i & \rightarrow a x_i
\end{align*}
\]

where \(a \in T\), \(x_i \in V^*\), and \(Z_i\) are new variables introduced for left recursion.

4. All productions with \(A_n\) are in the correct form, \(A_n \rightarrow a x_n\). Use these productions as substitutions to get \(A_{n-1}\) productions in the correct form. Repeat with \(A_{n-2}, A_{n-3}\), etc until all productions are in the correct form.