Combining Turing Machines

We will define notation that will make it easier to look at more complicated Turing machines

1. Given Turing Machines M1 and M2
 Notation for
 - Run M1
 - Run M2

2. Given Turing Machines M1 and M2
 Notation for
 - Run M1
 - If x is current symbol
 - then Run M2
3. Given Turing Machines M1, M2, and M3

Notation for

- Run M1
- If x is current symbol
 - then Run M2
 - else Run M3

More Notation for Simplifying Turing Machines

Suppose \(\Gamma = \{a,b,c,B\} \)

- \(z \) is any symbol in \(\Gamma \)
- \(x \) is a specific symbol from \(\Gamma \)

1. \(s \) - start
2. \(R \) - move right
3. L - move left

4. x - write x (and don’t move)

5. R\textsubscript{a} - move right until you see an a

6. L\textsubscript{a} - move left until you see an a

7. R\textsubscript{¬a} - move right until you see anything that is not an a

8. L\textsubscript{¬a} - move left until you see anything that is not an a

9. h - halt in a final state

10. \begin{align*}
 & a, b \\
 \rightarrow & \ w
\end{align*}

If the current symbol is a or b, let w represent the current symbol.
Example

Assume input string $w \in \Sigma^+$, $\Sigma = \{a, b\}$.

If $|w|$ is odd, then write a b at the end of the string. The tape head should finish pointing at the leftmost symbol of w.

input: bab, output: babb

input: ba, output: ba

What is the running time?
Example

Assume input string \(w \in \Sigma^+, \Sigma = \{a, b\}, |w| > 0 \)

For each \(a \) in the string, append a \(b \) to the end of the string.

input: \(abbabb \), output: \(abbabbb \)

The tape head should finish pointing at the leftmost symbol of \(w \).

Turing’s Thesis Any computation that can be carried out by a mechanical means can be performed by a TM.

Definition: An *algorithm* for a function \(f:D \rightarrow R \) is a TM M, which given input \(d \in D \), halts with answer \(f(d) \in R \).

Example: \(f(x + y) = x + y \), \(x \) and \(y \) unary numbers.

\[
\begin{array}{c|c}
\text{start with:} & 111+1111 \\
\uparrow & \\
\text{end with:} & 1111111 \\
\uparrow & \\
\end{array}
\]
Example: Copy a String, \(f(w) = w0w \), \(w \in \Sigma^* \), \(\Sigma = \{a, b, c\} \)

Denoted by \(C \)

\[
\begin{align*}
\text{start with:} & \quad \text{abac} \\
& \uparrow \\
\text{end with:} & \quad \text{abac0abac} \\
& \uparrow
\end{align*}
\]

Algorithm:

- Write a 0 at end of string
- For each symbol in string
 - make a copy of the symbol

\[
\begin{array}{c}
\text{s R 0 L } \\
\text{B B}
\end{array}
\xrightarrow{a,b,c}
\begin{array}{c}
\text{w R B} \\
\text{w L B}
\end{array}
\xrightarrow{w}
\begin{array}{c}
\text{B R w L w} \\
\text{B B}
\end{array}
\]

\[
\begin{array}{c}
\text{L R h} \\
\text{B}
\end{array}
\]
Example: Shift the string that is to the left of the tape head to the right, denoted by S_R (shift right)

Below, “ba” is to the left of the tape head, so shift “ba” to the right.

\[
\begin{align*}
\text{start with:} & \quad \text{aaBbabca} \\
\uparrow & \\
\text{end with:} & \quad \text{aaBBbaca} \\
\uparrow &
\end{align*}
\]

Algorithm:

- remember symbol to the right and erase it
- for each symbol to the left do
 - shift the symbol one cell to the right
- replace first symbol erased
- move tape head to appropriate position
Example: Shift the string that is to the right of tape head to the left, denote by S_L (shift left)

\[
\begin{align*}
\text{start with:} & \quad \text{babcaBba} \\
\uparrow \quad & \quad \uparrow \\
\text{end with:} & \quad \text{bacaBBba} \\
\end{align*}
\]

(similar to S_R)
Example: Add unary numbers

This time use shift.

Example: Multiply two unary numbers, f(x*y)=x*y, x and y unary numbers. Assume x, y > 0.

start with: 1111*11
↑

end with: 11111111
↑