Section: Parsing

Parsing: Deciding if \(x \in \Sigma^* \) is in \(L(G) \) for some CFG \(G \).

Consider the CFG \(G \):

\[
\begin{align*}
S & \rightarrow \text{Aa} \\
A & \rightarrow \text{AA} \mid \text{ABa} \mid \lambda \\
B & \rightarrow \text{BBa} \mid b \mid \lambda
\end{align*}
\]

Is \(ba \) in \(L(G) \)? Running time?

New grammar \(G' \) is:

\[
\begin{align*}
S & \rightarrow \text{Aa} \mid a \\
A & \rightarrow \text{AA} \mid \text{ABa} \mid \text{Aa} \mid \text{Ba} \mid a \\
B & \rightarrow \text{BBa} \mid \text{Ba} \mid a \mid b
\end{align*}
\]

Is \(ba \) in \(L(G) \)? Running time?
Top-down Parser:

- Start with S and try to derive the string.

\[S \rightarrow aS | b \]

- Examples: LL Parser, Recursive Descent
Bottom-up Parser:

- Start with string, work backwards, and try to derive S.

- Examples: Shift-reduce, Operator-Precedence, LR Parser
The function \textbf{FIRST}:

$$G = (V, T, S, P)$$

$$w, v \in (V \cup T)^*$$

$$a \in T$$

$$X, A, B \in V$$

$$X_I \in (V \cup T)^+$$

\textbf{Definition: FIRST}(w) = the set of terminals that begin strings derived from w.

If $$w \stackrel{*}{\Rightarrow} av$$ then

a is in FIRST(w)

If $$w \stackrel{*}{\Rightarrow} \lambda$$ then

\lambda is in FIRST(w)
To compute FIRST:

1. $\text{FIRST}(a) = \{a\}$

2. $\text{FIRST}(X)$

 (a) If $X \to aw$ then
 a is in $\text{FIRST}(X)$

 (b) IF $X \to \lambda$ then
 λ is in $\text{FIRST}(X)$

 (c) If $X \to Aw$ and $\lambda \in \text{FIRST}(A)$
 then
 Everything in $\text{FIRST}(w)$ is in $\text{FIRST}(X)$
3. In general, FIRST($X_1X_2X_3...X_K$) =

- FIRST(X_1)
- \cup FIRST(X_2) if λ is in FIRST(X_1)
- \cup FIRST(X_3) if λ is in FIRST(X_1) and λ is in FIRST(X_2)
 ...
- \cup FIRST(X_K) if λ is in FIRST(X_1) and λ is in FIRST(X_2) ...
 and λ is in FIRST(X_{K-1})
- $\{-\lambda\}$ if $\lambda \notin$ FIRST(X_J) for all J
Example:

\[S \rightarrow aSc \mid B \]
\[B \rightarrow b \mid \lambda \]

\[
\text{FIRST}(B) = \\
\text{FIRST}(S) = \\
\text{FIRST}(Sc) = \\
\]

Example

\[\begin{align*}
S & \rightarrow BCD \mid aD \\
A & \rightarrow CEB \mid aA \\
B & \rightarrow b \mid \lambda \\
C & \rightarrow dB \mid \lambda \\
D & \rightarrow cA \mid \lambda \\
E & \rightarrow e \mid fE
\end{align*}\]

FIRST(S) =
FIRST(A) =
FIRST(B) =
FIRST(C) =
FIRST(D) =
FIRST(E) =
Definition: $\text{FOLLOW}(X) =$ set of terminals that can appear to the right of X in some derivation.

If $S \Rightarrow^* wAav$ then

\[a \text{ is in FOLLOW}(A) \]

To compute FOLLOW:

1. $\$ $ is in FOLLOW(S)
2. If $A \rightarrow wBv$ and $v \neq \lambda$ then
 \[\text{FIRST}(v) - \{\lambda\} \text{ is in FOLLOW}(B) \]
3. IF $A \rightarrow wB$ OR $A \rightarrow wBv$ and λ is in FIRST(v)
 then
 \[\text{FOLLOW}(A) \text{ is in FOLLOW}(B) \]
4. λ is never in FOLLOW
Example:

\[S \rightarrow aSc \mid B \]
\[B \rightarrow b \mid \lambda \]

\[\text{FOLLOW}(S) = \]
\[\text{FOLLOW}(B) = \]
Example:

\[S \rightarrow BCD \mid aD \]
\[A \rightarrow CEB \mid aA \]
\[B \rightarrow b \mid \lambda \]
\[C \rightarrow dB \mid \lambda \]
\[D \rightarrow cA \mid \lambda \]
\[E \rightarrow e \mid fE \]

FOLLOW(S) =
FOLLOW(A) =
FOLLOW(B) =
FOLLOW(C) =
FOLLOW(D) =
FOLLOW(E) =