Announcements

- Class Feb 17 was snowed out
- RQ10 and reading up later today
- APT 4 is due Tuesday
- There is lab this week
- No assignment out yet
- Do not discuss Exam1 with anyone until it is handed back next week

Creating a list

- Given a list of numbers, create a second list of every number squared.

```python
nums = [8, 3, 5, 4, 1]
sqnums = []
for v in nums:
    sqnums.append(v*v)
print sqnums
```

[64, 9, 25, 16, 1]
More on List operations

• See list operations on next page
• Mutator vs hybrid vs return
 – Mutator changes the list (no return value)
 – Hybrid changes list and returns value
 – Return – returns value, no change to list

List operations from book

<table>
<thead>
<tr>
<th>Method</th>
<th>Parameters</th>
<th>Result</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>append</td>
<td>item</td>
<td>mutator</td>
<td>Adds a new item to the end of a list</td>
</tr>
<tr>
<td>insert</td>
<td>position, item</td>
<td>mutator</td>
<td>Inserts a new item at the position given</td>
</tr>
<tr>
<td>pop</td>
<td>none</td>
<td>hybrid</td>
<td>Removes and returns the last item</td>
</tr>
<tr>
<td>pop</td>
<td>position</td>
<td>hybrid</td>
<td>Removes and returns the item at position</td>
</tr>
<tr>
<td>sort</td>
<td>none</td>
<td>mutator</td>
<td>Modifies a list to be sorted</td>
</tr>
<tr>
<td>reverse</td>
<td>none</td>
<td>mutator</td>
<td>Modifies a list to be in reverse order</td>
</tr>
<tr>
<td>index</td>
<td>item</td>
<td>return idx</td>
<td>Returns the position of first occurrence of item</td>
</tr>
<tr>
<td>count</td>
<td>item</td>
<td>return ct</td>
<td>Returns the number of occurrences of item</td>
</tr>
<tr>
<td>remove</td>
<td>item</td>
<td>mutator</td>
<td>Removes the first occurrence of item</td>
</tr>
</tbody>
</table>

Problem

• Remove all negative numbers from list
• Two ways
 1) return a new list with all negative numbers removed
 2) Modify a list to remove negative numbers

def removeNegatives(numberlist):
 # return a new list without negatives
 answer = []
 for num in numberlist:
 if num >= 0:
 answer.append(num)
 return answer

somenums = [3, -1, 8, -5, -2, 6, 7]
onegs = removeNegatives(somenums)
def removeNegatives2(numberlist):
 # remove the negative numbers
 # from the list
 for x in range(len(numberlist)):
 value = numberlist[x]
 if value < 0:
 numberlist.pop(x)

somenums = [3, -1, 8, -5, -2, 6, 7]
removeNegatives2(somenums)

def removeNegatives3(numberlist):
 # remove the negative numbers
 # from the list
 pos = 0;
 while (pos < len(numberlist)):
 value = numberlist[pos]
 if value < 0:
 numberlist.pop(pos)
 pos = pos + 1

somenums = [3, -1, 8, -5, -2, 6, 7]
removeNegatives3(somenums)

List Comprehension

• Take advantage of patterns, make a new list
 based on per element calculations of another list

• Format:
 [<expression with variable> for <variable> in <old list>]

• Example:
 nums = [8, 3, 5, 4, 1]
 sqnums = [v*v for v in nums]
Examples of List Comprehensions

[v for v in nums]
[2 for v in nums]
[v*2 for v in nums]

Creating a list with just the even numbers

nums = [8, 3, 5, 4, 1]
evennums = []
for v in nums:
 if v % 2 == 0:
 evennums.append(v)
print evennums

Evennums = [8, 4]

List Comprehension with Filtering

- Create list and use “if” to filter out elements to the list
- Format:
 [<expression with variable> for <variable> in <old list> if <filter with variable>]
- Example: nums = [8, 3, 5, 4, 1]
evennums = [v for v in nums if v%2==0]

More on List Comprehensions

- What is the list for the following:
 1) [j+1 for j in range(20) if (j%3) == 0]
 2) [i*2 for i in [j+1 for j in range(20) if (j%3) == 0] if i*i > 19]