Text Analysis

Everything Data

CompSci 216 Spring 2015
Announcements (Wed. Feb. 11)

• HW 5 will be posted by tomorrow (Thu) morning.

• Project: More information in the lab on Monday!
Outline

• Basic Text Processing
 – Word Counts
 – Tokenization
 • Pointwise Mutual Information
 – Normalization
 • Stemming
Outline

• Basic Text Processing

• Finding Salient Tokens
 – TFIDF scoring
Outline

• Basic Text Processing
• Finding Salient Tokens

• Document Similarity & Keyword Search
 – Vector Space Model & Cosine Similarity
 – Inverted Indexes
Outline

• Basic Text Processing
 – Word Counts
 – Tokenization
 • Pointwise Mutual Information
 – Normalization
 • Stemming

• Finding Salient Tokens
• Document Similarity & Keyword Search
Basic Query: Word Counts

Google Flu

Emotional Trends

http://www.ccs.neu.edu/home/amislove/twittermood/
Basic Query: Word Counts

• How many times does each word appear in the document?
Problem 1

• What is a word?
 – I’m … 1 word or 2 words {I’m} or {I, am}
 – State-of-the-art … 1 word or 4 words
 – San Francisco … 1 or 2 words

– Other Languages
 • French: l’ensemble
 • German: freundshaftsbekleidungen
 • Chinese: 這是一個簡單的句子 (no spaces)

This, one, easy, sentence
Solution: Tokenization

• For English:
 – Splitting the text on non alphanumeric characters is a reasonable way to find individual words.
 – But will split words like “San Francisco” and “state-of-the-art”

• For other languages:
 – Need more sophisticated algorithms for identifying words.
Finding simple phrases

• Want to find pairs of tokens that always occur together (co-occurrence)

• Intuition: Two tokens are co-occurent if they appear together more often than “random”
 – More often than monkeys typing English words

http://tmblr.co/ZiEAFywGEckV
Formalizing “more often than random”

• **Language Model**
 – Assigns a probability $P(x_1, x_2, \ldots, x_k)$ to any sequence of tokens.
 – More common sequences have a higher probability

 – Sequences of length 1: **unigrams**
 – Sequences of length 2: **bigrams**
 – Sequences of length 3: **trigrams**
 – Sequences of length n: **n-grams**
Formalizing “more often than random”

• Suppose we have a language model

 – $P(\text{“San Francisco”})$ is the probability that “San” and “Francisco” occur together (and in that order) in the language.
Formalizing “random”: Bag of words

• Suppose we only have access to the unigram language model
 – *Think: all unigrams in the language thrown into a bag with counts proportional to their* $P(x)$
 – *Monkeys drawing words at random from the bag*

 – $P(“San”) \times P(“Francisco”)$ is the probability that “San Francisco” occurs together in the (random) unigram model
Formalizing “more often than random”

• **Pointwise Mutual Information:**

\[
\text{PMI}(x_1, x_2) = \log_2 \frac{P(x_1, x_2)}{P(x_1) \cdot P(x_2)}
\]

– Positive PMI suggests word co-occurrence
– Negative PMI suggests words don’t appear together
What is $P(x)$?

• “Suppose we have a language model …”

• Idea: Use counts from a large corpus of text to compute the probabilities
What is $P(x)$?

- **Unigram**: $P(x) = \frac{\text{count}(x)}{N}$
 - count(x) is the number of times token x appears
 - N is the total # tokens.

- **Bigram**: $P(x_1, x_2) = \frac{\text{count}(x_1, x_2)}{N}$
 - count(x_1, x_2) = # times sequence (x_1, x_2) appears

- **Trigram**: $P(x_1, x_2, x_3) = \frac{\text{count}(x_1, x_2, x_3)}{N}$
 - count(x_1, x_2, x_3) = # times sequence (x_1, x_2, x_3) appears
What is $P(x)$?

• “Suppose we have a language model …”

• Idea: Use counts from a large corpus of text to compute the probabilities
Large text corpora

• Corpus of Contemporary American English
 – http://corpus.byu.edu/coca/

• Google N-gram viewer
 – https://books.google.com/ngrams
Summary of Problem 1

• Word tokenization can be hard

• Space/non-alphanumeric words may oversplit the text

• We can find co-occurrent tokens:
 – Build a language model from a large corpus
 – Check whether the pair of tokens appear more often than random using pointwise mutual information.
Language models …

• … have many many applications

 – Tokenizing long strings
 – Word/query completion/suggestion
 – Spell checking
 – Machine translation
 – …
Problem 2

• A word may be represented in many forms
 – car, cars, car’s, cars’ \(\rightarrow\) car
 – automation, automatic \(\rightarrow\) automate

• Lemmatization: Problem of finding the correct dictionary headword form
Solution: Stemming

• Words are made up of
 – Stems: core word
 – Affixes: modifiers added (often with grammatical function)

• Stemming: reduce terms to their stems by crudely chopping off affixes
 – automation, automatic → automat
Porter’s algorithm for English

• Sequences of rules applied to words

Example rule sets:

```plaintext
/(.*)sses$/ → \1ss
/(.*)ies$/ → \1i
/(.*)ss$/ → \1s
/(.*[^s])s$/ → \1

/(.*[aeiou]+.*ing$)/ → \1
/(.*[aeiou]+.*ed$)/ → \1
```
Any other problems?

• Same words that mean different things
 – Florence the person vs Florence the city
 – Paris Hilton (person or hotel)

• Abbreviations
 – I.B.M vs International Business Machines

• Different words meaning same thing
 – Big Apple vs New York

• …
Any other problems?

• Same words that mean different things
 – Word Sense Disambiguation

• Abbreviations
 – Translations

• Different words meaning same thing
 – Named Entity Recognition & Entity Resolution

• …
Outline

• Basic Text Processing

• Finding Salient Tokens
 – TFIDF scoring

• Document Similarity & Keyword Search
Summarizing text

Belinelli’s late jumper gives Popovich his 1000th career w.
Yahoo Sports (blog) - 4 hours ago
Gregg Popovich of the San Antonio Spurs has already established himself ... Nevertheless, it's pretty cool and rare any time a coach hits 1,000 ...

Recommended Reviews for Udupi Cafe

Review Highlights What's this?

"They are absolutely delicious try the dosa and mango lasy yum."
In 27 reviews

"Excellent buffet with an awesome selection."
In 40 reviews

"The fresh coconut chutney rocks my world, as does the service at..."
In 6 reviews

Rating Distribution Trend
5 stars
4 stars
3 stars
2 stars
1 star
Finding salient tokens (words)

- Most frequent tokens?
Document Frequency

• Intuition: Uninformative words appear in many documents (not just the one we are concerned about)

• Salient word:
 – High count within the document
 – Low count across documents
TF•IDF score

- **Term Frequency (TF):**
 \[
 TF(x) = \log_{10}(1 + c(x)) \quad \text{or} \quad c(x)
 \]

 \(c(x)\) is the number of times \(x\) appears in the document.

- **Inverse Document Frequency (IDF):**
 \[
 IDF(x) = \log_{10}\left(\frac{N_{docs}}{DF(x)}\right)
 \]

 \(DF(x)\) is the number of documents \(x\) appears in.
Back to summarization

• Simple heuristic:
 – Pick sentences $S = \{x_1, x_2, \ldots, x_k\}$ with the highest:

\[
\text{Salience}(S) = \frac{1}{|S|} \sum_{x \in S} \text{TF}(x) \cdot \text{IDF}(x)
\]
Outline

• Basic Text Processing
• Finding Salient Tokens

• Document Similarity & Keyword Search
 – Vector Space Model & Cosine Similarity
 – Inverted Indexes
Document Similarity

Belinelli's late jumper gives Popovich his 1000th career w...
Yahoo Sports (blog) - 4 hours ago
Gregg Popovich of the San Antonio Spurs has already established himself ... Nevertheless, it's pretty cool and rare any time a coach hits 1,000 ...

Spurs' Gregg Popovich becomes 9th NBA coach to win 1000 games
SI.com - 20 hours ago

SVG: Popovich's 1000 wins 'a great accomplishment'
Detroit Free Press - 2 minutes ago

Gregg Popovich Wins 1000th Game with Milestones Ahead & Other ...
In-Depth - Bleacher Report - 18 hours ago
Six things to know about Gregg Popovich's 1000th win
Blog - Washington Post (blog) - 20 hours ago
Raptors Beat Spurs, Deny Popovich 1000th Win
In-Depth - ABC News - Feb 8, 2015
Vector Space Model

- Let \(V = \{x_1, x_2, \ldots, x_n\} \) be the set of all tokens (across all documents)

- A document is a \(n \)-dimensional vector

\[
D = [w_1, w_2, \ldots, w_n]
\]

where \(w_i = \text{TFIDF}(x_i, D) \)
Distance between documents

- Euclidean distance
 \[D1 = [w_1, w_2, \ldots, w_n] \]
 \[D2 = [y_1, y_2, \ldots, y_n] \]
 \[d(D1, D2) = \sqrt{\sum_i (w_i - y_i)^2} \]

- Why?
Cosine Similarity

\[d(D1, D2) = \cos(\theta) \]
Cosine Similarity

- $D_1 = [w_1, w_2, ..., w_n]$
- $D_2 = [y_1, y_2, ..., y_n]$

$$d(D_1, D_2) = \frac{\sum_i w_i \cdot y_i}{\sqrt{\sum_i w_i^2} \cdot \sqrt{\sum_i y_i^2}}$$

Dot Product

L2 Norm
Keyword Search

• How to find documents that are similar to a keyword query?

• Intuition: Think of the query as another (very short) document
Keyword Search

• Simple Algorithm

For every document \(D \) in the corpus
Compute \(d(q, D) \)

Return the top-\(k \) highest scoring documents
Does it scale?

http://www.worldwidewebsize.com/
Inverted Indexes

• Let $V = \{x_1, x_2, \ldots, x_n\}$ be the set of all token

• For each token, store <token, sorted list of documents token appears in>
 - <“caeser”, [1,3,4,6,7,10,…)>

• How does this help?
Using Inverted Lists

• Documents containing “caesar”
 – Use the inverted list to find documents containing “caesar”

 – What additional information should we keep to compute similarity between the query and documents?
Using Inverted Lists

• Documents containing “caesar” AND “cleopatra”
 – Return documents in the intersection of the two inverted lists.
 – Why is inverted list sorted on document id?

• OR? NOT?
 – Union and difference, resp.
Many other things in a modern search engine ...

• Maintain positional information to answer phrase queries

• Scoring is not only based on token similarity
 – Importance of Webpages: PageRank (in later classes)

• User Feedback
 – Clicks and query reformulations
Summary

• Word counts are very useful when analyzing text
 – Need good algorithms for tokenization, stemming and other normalizations

• Algorithm for finding word co-occurrence
 – Language Models
 – Pointwise Mutual Information
Summary (contd.)

- Raw counts are not sufficient to find salient tokens in a document
 - Term Frequency x Inverse Document Frequency (TFIDF) scoring

- Keyword Search
 - Use Cosine Similarity over TFIDF scores to compute similarity
 - Use Inverted Indexes to speed up processing.