Recall: Supervised Learning

Formal definition:

Given training data:

\[X = \{x_1, \ldots, x_n\} \text{ inputs} \]
\[Y = \{y_1, \ldots, y_n\} \text{ labels - if discrete: classification} \]

Produce:

Decision function \(f : X \rightarrow Y \)

That minimizes error:

\[\sum_i err(f(x_i), y_i) \]
Decision Trees

The Perceptron

If your input \(x \) is real-valued ... explicit decision boundary?

The Perceptron

Which side of a line are you on?

\[w \cdot x = ||w|| ||x|| \cos(\theta) \]
The Perceptron

How do you reduce error?

\[e = (y_i - (w \cdot x_i + c))^2 \]

\[\frac{\partial e}{\partial w_j} = -2(y_i - (w \cdot x_i + c))x_i(j) \]

descend this gradient to reduce error

The Perceptron Algorithm

Assume you have a batch of data:
\[X = \{x_1, \ldots, x_n\} \]
\[Y = \{y_1, \ldots, y_n\} \]

set w, c to 0.
for each \(x_i \):
\[\text{predict } z_i = \text{sign}(w \cdot x_i + c) \]
if \(z_i \neq y_i \):
\[w = w + a(y_i - z_i)x_i \]
converges if data is linearly separate

Probabilities

What if you want a probabilistic classifier?

Instead of \(\text{sign} \), squash output of linear sum down to \([0, 1]\):
\[\sigma(w \cdot x + c) \]

Resulting algorithm: logistic regression.

Perceptrons

What can’t you do?
Frank Rosenblatt

Built the *Mark I* in 1960.

Neural Networks

\[\sigma(w \cdot x + c) \]

logistic regression

Nonparametric Methods

Most ML methods can be characterized by setting a few parameters.

Alternative approach:
- Let the data speak for itself.
- No finite-sized parameter vector.
- Usually more interesting decision boundaries.

K-Nearest Neighbors

Given training data:

\[X = \{x_1, \ldots, x_n\} \]

\[Y = \{y_1, \ldots, y_n\} \]

Distance metric \(D(x_i, x_j) \)

For a new data point \(x_{\text{new}} \):

find \(k \) nearest points in \(X \) (measured via \(D \))

set \(y_{\text{new}} \) is the majority label
K-Nearest Neighbors

Properties:
• No learning phase.
• Must store all the data.
• $\log(n)$ computation per sample - grows with data.

Decision boundary: any function, given enough data.

Classic trade-off: memory and compute time for flexibility.