3D Transformations

CS 465 Lecture 9
Translation

\[
\begin{bmatrix}
x' \\
y' \\
z'
\end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]
Scaling

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 s_x & 0 & 0 & 0 \\
 0 & s_y & 0 & 0 \\
 0 & 0 & s_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

P' = (x', y', z')
Rotation about z axis

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 \cos \theta & -\sin \theta & 0 & 0 \\
 \sin \theta & \cos \theta & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Rotation about x axis

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & \cos \theta & -\sin \theta & 0 \\
 0 & \sin \theta & \cos \theta & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Rotation about y axis

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix}
= \begin{bmatrix}
 \cos \theta & 0 & \sin \theta & 0 \\
 0 & 1 & 0 & 0 \\
 -\sin \theta & 0 & \cos \theta & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
General rotations

- A rotation in 2D is around a point
- A rotation in 3D is around an axis
 - so 3D rotation is w.r.t an orientation as well as a position
- Compute by composing elementary transforms
 - transform rotation axis to align with x axis
 - apply rotation
 - inverse transform back into position
- Just as in 2D this can be interpreted as a similarity transform
Building general rotations

• Using elementary transforms you need three
 – translate axis to pass through origin
 – rotate about y to get into $x-y$ plane
 – rotate about z to align with x axis

• Alternative: construct frame and change coordinates
 – choose p, u, v, w to be orthonormal frame with p and u
 matching the rotation axis
 – apply similarity transform $T = F R_x(\theta) F^{-1}$
Orthonormal frames in 3D

• Useful tools for constructing transformations
• Recall rigid motions
 – affine transforms with pure rotation
 – columns (and rows) form right handed ONB
 • that is, an orthonormal basis

\[
F = \begin{bmatrix}
 u & v & w & p \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]
Building 3D frames

• Given a vector \(\mathbf{a} \) and a secondary vector \(\mathbf{b} \)

 – The \(\mathbf{u} \) axis should be parallel to \(\mathbf{a} \); the \(\mathbf{u}-\mathbf{v} \) plane should contain \(\mathbf{b} \)

 • \(\mathbf{u} = \mathbf{u} / \|\mathbf{u}\| \)
 • \(\mathbf{w} = \mathbf{u} \times \mathbf{b}; \mathbf{w} = \mathbf{w} / \|\mathbf{w}\| \)
 • \(\mathbf{v} = \mathbf{w} \times \mathbf{u} \)

• Given just a vector \(\mathbf{a} \)

 – The \(\mathbf{u} \) axis should be parallel to \(\mathbf{a} \); don’t care about orientation about that axis

 • Same process but choose arbitrary \(\mathbf{b} \) first
 • Good choice is not near \(\mathbf{a} \): e.g. set smallest entry to 1
Building general rotations

• Alternative: construct frame and change coordinates
 – choose \(p \), \(u \), \(v \), \(w \) to be orthonormal frame with \(p \) and \(u \) matching the rotation axis
 – apply similarity transform \(T = FR_x(\theta) F^{-1} \)
 – interpretation: move to \(x \) axis, rotate, move back
 – interpretation: rewrite \(u \)-axis rotation in new coordinates
 – (each is equally valid)
Transforming normal vectors

- Transforming surface normals
 - differences of points (and therefore tangents) transform OK
 - normals do not

\[\mathbf{t} \cdot \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0 \]
want: \[M\mathbf{t} \cdot X \mathbf{n} = \mathbf{t}^T M^T X \mathbf{n} = 0 \]
so set \[X = (M^T)^{-1} \]
them: \[M\mathbf{t} \cdot X \mathbf{n} = \mathbf{t}^T M^T (M^T)^{-1} \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0 \]