Apache Spark 101

Lance Co Ting Keh

Senior Software Engineer, Machine Learning @ Box

Outline

About me
Distributed Computing at a High Level
Disk versus Memory based Systems

Spark Core
Brief background
Benchmarks and Comparisons
What is an RDD
RDD Actions and Transformations
Caching and Serialization
Anatomy of a Program
The Spark Family

Why Distributed Computing?

Problem Single machine cannot complete the
computation at hand

Solution Parallelize the job and distribute work

among a network of machines

Issues Arise in Distributed Computing

* How do | distribute an algorithm?
* How do | partition my dataset?

* How do | maintain a single consistent view of a
shared state?

e How do | recover from machine failures?

e How do | allocate cluster resources?

Finding majority element in a single machine

List(20, 18, 20, 18, 20)

Finding majority element in a distributed dataset

List(1, 18, 1, 18, 1)
List(2, 18, 2, 18, 2)
List(3, 18, 3, 18, 3)

List(4, 18, 4, 18, 4)

List(5, 18, 5, 18, 5)

Finding majority element in a distributed dataset

List(1, 18, 1, 18, 1)

List(2, 18, 2, 18, 2)

List(3, 18, 3, 18, 3)

List(4, 18, 4, 18, 4)

List(5, 18, 5, 18, 5)

Disk Based vs Memory Based Frameworks

Disk Based Frameworks
Persists intermediate results to disk
Data is reloaded from disk with every query
Easy failure recovery
Best for ETL like work-loads
Examples: Hadoop, Dryad

y

"Reduce —»

"Reduce —>

Image courtesy of Matei Zaharia, Introduction to Spark

Disk Based vs Memory Based Frameworks C

Reuse working data set in memory

* Memory Based Frameworks

—Circumvents heavy cost of I/0 by keeping intermediate
results in memory

—Sensitive to availability of memory
—Remembers operationsapplied to dataset
—Best for iterative workloads

—Examples: Spark, Flink

Input

Image courtesy of Matei Zaharia, Introduction to Spark

The rest of the talk

Spark Core
Brief background
Benchmarks and Comparisons
What is an RDD
RDD Actions and Transformations
Spark Cluster
Anatomy of a Program
The Spark Family

10

Spark Background

Amplab UC Berkley
Project Lead: Dr. Matei Zaharia
First paper published on RDD’s was in 2012

Open sourced from day one, growing number of
contributors

Released its 1.0 version May 2014. Currently in 1.2.1

Databricks company established to support Spark and all
its related technologies. Matei currently sits as its CTO

Amazon, Alibaba, Baidu, eBay, Groupon, Ooyala,
OpenTable, Box, Shopify, TechBase, Yahoo!

11

Spark versus Scalding (Hadoop)

Benchmarks Runtime

—
w
—
v
=
=
=
'
L))
W

1

.

0 .
Generating

Datapoints
“ Spark 29

“Scalding 25

Kmeans (per
iteration)

9
40

Twitter

87

Wikipedia

48

Jaccard

246
590

Ad-hoc batch queries

SELECT pageURL, pageRank FROM rankings WHERE pageRank > X

Query 1A Query 1B Query 1C
32,888 results 3,331,851 results 89,974,976 results

iws
o (a]
1 1
o
8 c
E ()]

Impala - Disk
Impala - Disk

Shark - Disk

Shark - Disk
I Shark - Mem

I redshift (HDD)
- Shark - Mem

[Redshift (HDD)

I Shark - Mem
. Impala - Mem

[reashift (HDD)
I Impala - Mem

Resilient Distributed Datasets (RDDs)

Main object in Spark’s universe

Think of it as representing the data at that stage in
the operation

Allows for coarse-grained transformations (e.g. map,
group-by, join)

Allows for efficient fault recovery using lineage
Log one operation to apply to many elements
Recompute lost partitions of dataset on failure

No cost if nothing fails

14

RDD Actions and Transformations

Transformations
Lazy operations applied on an RDD
Creates a new RDD from an existing RDD
Allows Spark to perform optimizations

e.g. map, filter, flatMap, union, intersection,
distinct, reduceByKey, groupByKey

Actions

Returns a value to the driver program after
computation

e.g. reduce, collect, count, first, take, saveAsFile

15

RDD Representation

Simple common interface:
Set of partitions

Preferred locations for each partition
List of parent RDDs

Function to compute a partition given parents
Optional partitioning info

Allows capturing wide range of transformations

Slide courtesy of Matei Zaharia, Introduction to Spark

16

Spark Cluster

Driver

* Entry point of Spark application

* Main Spark application is ran here

e Results of “reduce” operations are aggregated here

17

Spark Cluster C

Master

 Distributed coordination of Spark workers including:
" Health checking workers
= Reassignment of failed tasks
" Entry point for job and cluster metrics

18

Spark Cluster

L

Worker
e Spawns executors to perform tasks on partitions of data

19

Example: Log Mining -

Load error messages from a log into memory, then
interactively search for various patterns

lines = spark.textFile(“hdfs://...") —

errors = lines.filter(_.startswith(“ERROR")) results o
messages = errors.map(_.split(‘\t’) (2)) - tasks FRloek T

messages.persist() | ~

fre)

T
TBlock2
. <

messages.filter(_.contains(“foo”)).count
messages.filter(_.contains(“bar”)).count

Result: scaled to 1 TB data in 5-7 sec

(vs 170 sec for on-disk data)

Slide courtesy of Matei Zaharia, Introduction to Spark 20

The Spark Family

e Aside from its performance and API, the
diverse tool set available in Spark is the
reason for its wide adoption

1. Spark Streaming
2. Spark SQL

3. MLlib
4. GraphX

21

Lambda Architecture

Lambda Architecture

PRECOMPUTE [0S
A(L'!I'D[‘):AS;A BC;T)CH VIEWS BATCH LAYER

e (VAP REDUCE)

...

Partial Partial Partial SERVING LAYER
aggregate §| aggregate W aggregate

NEW DATA BATCH VIEWS MERGED
STREAM - VIEW
REAL-TIME VIEWS (HBASE)

REAL-TIME DATA

STORM
PROCESS INCREMENT

STREAM T VIEWS
INCREMENT

SPEED LAYER

Lambda Architecture

Lambda Architecture

PRECOMPUTE
A(Ll-li-D[l)gA SBCH VIEWS BATCH LAYER

e (MAPREDUCE)

Partial Partial Partial SERVING LAYER
aggregate J| aggregate jj aggregate

MERGED
MERGE VIEW
REAL-TIME VIEWS (HBASE)

NEW DATA

STREAM

REAL-TIME DATA

PROCESS INCREMENT

STREAM T VIEWS
INCREMENT

SPEED LAYER

