
1

Data-Intensive Computing
Systems

Shivnath Babu

Concurrency Control

2

Transaction

•  Programming abstraction
•  Implement real-world transactions

– Banking transaction
– Airline reservation

3

Transaction: Programmer’s
Role

Consistent State Consistent State
Transaction

4

Transaction: System’s Role

•  Atomicity
– All changes of the transaction recorded or

none at all
•  Durability

– All future transactions see the changes made
by this transaction if it completes

•  Isolation
– Net effect as if the transaction executed in

isolation

5

Transaction: States

Begin Run

Abort

Commit

6

Transactions

•  Historical note:
– Turing Award for Transaction concept
– Jim Gray (1998)

•  Interesting reading:

Transaction Concept: Virtues and Limitations
by Jim Gray

http://www.hpl.hp.com/techreports/tandem/TR-81.3.pdf

7

Context

•  We have seen:
– Ensure atomicity in presence of failures

•  Next:
– Ensure Isolation during concurrency

8

Issues with Concurrency: Example

A = 500

B = 500

C = 500

Account
Balances

Bank database: 3 Accounts

Property: A + B + C = 1500

Money does not leave the system

9

Issues with Concurrency: Example

Read (A, t)

t = t - 100

Write (A, t)

Read (B, t)

t = t + 100

Write (B, t)

Transaction T1: Transfer 100 from A to B

A = 400, B = 600, C = 500

A = 500, B = 500, C = 500

10

Issues with Concurrency: Example

Read (A, s)

s = s - 100

Write (A, s)

Read (C, s)

s = s + 100

Write (C, s)

Transaction T2: Transfer 100 from A to C

Read (A, t)
t = t - 100

Write (A, t)
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s)

Read (C, s)
s = s + 100
Write (C, s)

Transaction T1 Transaction T2 A B C

400 600 600

500 500 500

400 500 500

400 500 500

400 500 600

400 + 600 + 600 = 1600

Read (A, t)
t = t - 100
Write (A, t)

Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s)

Read (C, s)
s = s + 100
Write (C, s)

Transaction T1 Transaction T2 A B C

300 600 600

500 500 500

400 500 500

300 500 500

300 500 600

300 + 600 + 600 = 1500

13

Terminology

•  Schedule:
– The exact sequence of (relevant) actions of

one or more transactions

14

Problems

•  Which schedules are “correct”?
– Mathematical characterization

•  How to build a system that allows only
“correct” schedules?
– Efficient procedure to enforce correctness

15

Correct Schedules: Serializability

•  Initial database state is consistent
•  Transaction:

– consistent state → consistent state
•  Serial execution of transactions:

–  Initial state → consistent state
•  Serializable schedule:

– A schedule equivalent to a serial schedule
– Always “correct”

Read (A, t)
t = t - 100
Write (A, t)
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s)
Read (C, s)
s = s + 100
Write (C, s)

A B C

300 600 600

500 500 500

400 500 600

300 + 600 + 600 = 1500

Serial Schedule

T1

T2

Read (A, t)
t = t - 100
Write (A, t)
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s)
Read (C, s)
s = s + 100
Write (C, s)

A B C

300 600 600

500 500 500

400 600 500

300 + 600 + 600 = 1500

Serial Schedule

T2

T1

18

Serial Schedule

Sn S0 S1 S2

T1 T2 Tn

Consistent States

Read (A, t)
t = t - 100
Write (A, t)

Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s)

Read (C, s)
s = s + 100
Write (C, s)

Transaction T2 Transaction T1

Is this Serializable?

Read (A, t)
t = t - 100
Write (A, t)
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s)
Read (C, s)
s = s + 100
Write (C, s)

Equivalent Serial Schedule

Transaction T2 Transaction T1

Read (A, t)
t = t - 100

Write (A, t)
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s)

Read (C, s)
s = s + 100
Write (C, s)

Is this Serializable?

Transaction T2 Transaction T1

No. In fact, it leads
to inconsistent state

Read (A, t)
t = t - 100

Write (A, t)
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s)

Read (C, s)
s = s + 100
Write (C, s)

Is this Serializable?

Transaction T2 Transaction T1

0

0

Read (A, t)
t = t - 100

Write (A, t)
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 0
Write (A, s)

Read (C, s)
s = s + 0
Write (C, s)

Is this Serializable?

Transaction T2 Transaction T1

Yes, T2 is no-op

Read (A, t)
t = t - 100

Write (A, t)
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 0
Write (A, s)

Read (C, s)
s = s + 0
Write (C, s)

Serializable Schedule

Transaction T2 Transaction T1

Serializability depends
on code details

Read (A, t)
t = t - 100
Write (A, t)

Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s)

Read (C, s)
s = s + 100
Write (C, s)

Transaction T2 Transaction T1

Serializable Schedule

Still Serializable!

26

Serializability

•  General Serializability:
– Hard to determine

•  Goal: weaker serializability
– Determined from database operations alone

•  Database Operations:
– Reads, Writes, Inserts, …

27

Simpler Notation

r (X)
T

Transaction T reads X

w (X) T
Transaction T writes X

28

What is X in r (X)?

•  X could be any component of a database:
– Attribute of a tuple
– Tuple
– Block in which a tuple resides
– A relation
– …

29

New Notation: Example Schedule

r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B)

time

30

Conflict Serializability

•  Weaker notion of serializability
•  Depends only on reads and writes

31

Conflict Serializability

Serializable Schedules

Conflict
Serializable
Schedules

32

Conflict Serializable Schedule

S S1 S2 Sn

Serial Schedule Conflict Serializable
Schedule

Transformations: swap non-conflicting actions

33

Transformation: Example

r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B)

r1(A) w1(A) r2(A) r1(B) w2(A) w1(B) r2(B) w2(B)

34

Non-Conflicting Actions

Two actions are non-conflicting if whenever they
occur consecutively in a schedule, swapping them
does not affect the final state produced by the
schedule. Otherwise, they are conflicting.

35

Conflicting or Non-Conflicting?

(Work on paper: Example 1)

36

Conflicting Actions: General Rules

•  Two actions of the same transaction
conflict:
–  r1(A) w1(B)
–  r1(A) r1(B)

•  Two actions over the same database
element conflict, if one of them is a write
–  r1(A) w2(A)
– w1(A) w2(A)

37

Conflict Serializability Examples

(Work on paper: Example 2 and 3)

38

Testing Conflict Serializability

•  Construct precedence graph G for given
schedule S

•  S is conflict-serializable iff G is acyclic

39

Graph Theory 101
Directed Graph:

Nodes

40

Graph Theory 101
Directed Graph: Edges

41

Graph Theory 101
Directed Graph:

Cycle

42

Graph Theory 101
Directed Graph: Not a cycle

43

Graph Theory 101

Acyclic Graph: A graph with no cycles

44

Graph Theory 101
Acyclic Graph:

45

Testing Conflict Serializability

•  Construct precedence graph G for given
schedule S

•  S is conflict-serializable iff G is acyclic

46

Precedence Graph

•  Precedence graph for schedule S:
– Nodes: Transactions in S
– Edges: Ti → Tj whenever

•  S: … ri (X) … wj (X) …
•  S: … wi (X) … rj (X) …
•  S: … wi(X) … wj (X) …

Note: not necessarily consecutive

47

Precedence Graph

•  Ti → Tj whenever:
– There is an action of Ti that occurs before a

conflicting action of Tj.

48

Precedence Graph Example

(Work on paper: Example 4)

49

Testing Conflict Serializability

•  Construct precedence graph G for given
schedule S

•  S is conflict-serializable iff G is acyclic

50

Correctness of
precedence graph method

(Work on paper)

51

Serializability vs.
Conflict Serializability

(Work on paper: Example 5)

52

View Serializability

•  A schedule S is view serializable if there
exists a serial schedule S’, such that the
source of all reads in S and S’ are the
same.

53

View Serializability Example

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B)

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B)

View Serializable Schedule

Serial Schedule

54

View Serializability Example

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B)

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B)

View Serializable Schedule

Serial Schedule

55

View Serializability Example

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B)

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B)

View Serializable Schedule

Serial Schedule

56

View Serializability Example

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B)

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B)

View Serializable Schedule

Serial Schedule

57

View Serializability

Serializable Schedules

Conflict
Serializable
Schedules

View Serializable
Schedules

58

Problems

•  Which schedules are “correct”?
– Serializability theory

•  How to build a system that allows only
“correct” schedules?
– Efficient procedure to enforce correctness

serializable schedules

59

Scheduler

DB

Enforcing Serializability

T1 T2 Tn

reads/writes
Strategy:
Prevent precedence
graph cycles?

60

Next

•  Enforcing serializability
– Locking-based techniques
– Timestamp-based techniques
– Validation-based techniques

