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Transaction 

•  Programming abstraction 
•  Implement real-world transactions 

– Banking transaction 
– Airline reservation 
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Transaction: Programmer’s 
Role 

Consistent State Consistent State 
Transaction 
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Transaction: System’s Role 

•  Atomicity  
– All changes of the transaction recorded or 

none at all 
•  Durability 

– All future transactions see the changes made 
by this transaction if it completes 

•  Isolation 
– Net effect as if the transaction executed in 

isolation 
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Transaction: States 

Begin Run 

Abort 

Commit 
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Transactions 

•  Historical note:  
– Turing Award for Transaction concept 
– Jim Gray (1998) 

•  Interesting reading: 

Transaction Concept: Virtues and Limitations 
by Jim Gray 

http://www.hpl.hp.com/techreports/tandem/TR-81.3.pdf 
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Context 

•  We have seen:  
– Ensure atomicity in presence of failures 

•  Next: 
– Ensure Isolation during concurrency 
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Issues with Concurrency: Example 

A  = 500 

B  = 500 

C  = 500 

Account 
Balances 

Bank database: 3 Accounts 

Property:  A + B + C = 1500 

Money does not leave the system 
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Issues with Concurrency: Example 

Read (A, t) 

t = t - 100 

Write (A, t)  

Read (B, t) 

t = t + 100 

Write (B, t) 

Transaction T1: Transfer 100 from A to B 

A = 400, B = 600, C = 500 

A = 500, B = 500, C = 500 
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Issues with Concurrency: Example 

Read (A, s) 

s = s - 100 

Write (A, s)  

Read (C, s) 

s = s + 100 

Write (C, s) 

Transaction T2: Transfer 100 from A to C 



Read (A, t) 
t = t - 100 

Write (A, t)  
Read (B, t) 
t = t + 100 
Write (B, t) 

Read (A, s) 
s = s - 100 
Write (A, s)  

Read (C, s) 
s = s + 100 
Write (C, s) 

Transaction T1 Transaction T2 A B C 

400 600 600 

500 500 500 

400 500 500 

400 500 500 

400 500 600 

400 + 600 + 600 = 1600 



Read (A, t) 
t = t - 100 
Write (A, t)  

Read (B, t) 
t = t + 100 
Write (B, t) 

Read (A, s) 
s = s - 100 
Write (A, s)  

Read (C, s) 
s = s + 100 
Write (C, s) 

Transaction T1 Transaction T2 A B C 

300 600 600 

500 500 500 

400 500 500 

300 500 500 

300 500 600 

300 + 600 + 600 = 1500 
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Terminology 

•  Schedule:  
– The exact sequence of (relevant) actions of 

one or more transactions  
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Problems 

•  Which schedules are “correct”? 
– Mathematical characterization 

•  How to build a system that allows only 
“correct” schedules? 
– Efficient procedure to enforce correctness 
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Correct Schedules: Serializability 

•  Initial database state is consistent 
•  Transaction:  

– consistent state → consistent state 
•  Serial execution of transactions: 

–  Initial state → consistent state 
•  Serializable schedule: 

– A schedule equivalent to a serial schedule 
– Always “correct” 



Read (A, t) 
t = t - 100 
Write (A, t)  
Read (B, t) 
t = t + 100 
Write (B, t) 

Read (A, s) 
s = s - 100 
Write (A, s)  
Read (C, s) 
s = s + 100 
Write (C, s) 

A B C 

300 600 600 

500 500 500 

400 500 600 

300 + 600 + 600 = 1500 

Serial Schedule 

T1 

T2 



Read (A, t) 
t = t - 100 
Write (A, t)  
Read (B, t) 
t = t + 100 
Write (B, t) 

Read (A, s) 
s = s - 100 
Write (A, s)  
Read (C, s) 
s = s + 100 
Write (C, s) 

A B C 

300 600 600 

500 500 500 

400 600 500 

300 + 600 + 600 = 1500 

Serial Schedule 

T2 

T1 
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Serial Schedule 

Sn S0 S1 S2 

T1 T2 Tn 

Consistent States 



Read (A, t) 
t = t - 100 
Write (A, t)  

Read (B, t) 
t = t + 100 
Write (B, t) 

Read (A, s) 
s = s - 100 
Write (A, s)  

Read (C, s) 
s = s + 100 
Write (C, s) 

Transaction T2 Transaction T1 

Is this Serializable? 



Read (A, t) 
t = t - 100 
Write (A, t)  
Read (B, t) 
t = t + 100 
Write (B, t) 

Read (A, s) 
s = s - 100 
Write (A, s)  
Read (C, s) 
s = s + 100 
Write (C, s) 

Equivalent Serial Schedule 

Transaction T2 Transaction T1 



Read (A, t) 
t = t - 100 

Write (A, t)  
Read (B, t) 
t = t + 100 
Write (B, t) 

Read (A, s) 
s = s - 100 
Write (A, s)  

Read (C, s) 
s = s + 100 
Write (C, s) 

Is this Serializable? 

Transaction T2 Transaction T1 

No.  In fact, it leads 
to inconsistent state 



Read (A, t) 
t = t - 100 

Write (A, t)  
Read (B, t) 
t = t + 100 
Write (B, t) 

Read (A, s) 
s = s - 100 
Write (A, s)  

Read (C, s) 
s = s + 100 
Write (C, s) 

Is this Serializable? 

Transaction T2 Transaction T1 

0 

0 



Read (A, t) 
t = t - 100 

Write (A, t)  
Read (B, t) 
t = t + 100 
Write (B, t) 

Read (A, s) 
s = s - 0 
Write (A, s)  

Read (C, s) 
s = s + 0 
Write (C, s) 

Is this Serializable? 

Transaction T2 Transaction T1 

Yes, T2 is no-op 



Read (A, t) 
t = t - 100 

Write (A, t)  
Read (B, t) 
t = t + 100 
Write (B, t) 

Read (A, s) 
s = s - 0 
Write (A, s)  

Read (C, s) 
s = s + 0 
Write (C, s) 

Serializable Schedule 

Transaction T2 Transaction T1 

Serializability depends  
on code details 



Read (A, t) 
t = t - 100 
Write (A, t)  

Read (B, t) 
t = t + 100 
Write (B, t) 

Read (A, s) 
s = s - 100 
Write (A, s)  

Read (C, s) 
s = s + 100 
Write (C, s) 

Transaction T2 Transaction T1 

Serializable Schedule 

Still Serializable! 
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Serializability 

•  General Serializability: 
– Hard to determine 

•  Goal: weaker serializability 
– Determined from database operations alone 

•  Database Operations: 
– Reads, Writes, Inserts, … 
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Simpler Notation 

r  (X) 
T 

Transaction T reads X 

w  (X) T 
Transaction T writes X 
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What is X in r (X)? 

•  X could be any component of a database: 
– Attribute of a tuple 
– Tuple 
– Block in which a tuple resides 
– A relation 
– … 
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New Notation: Example Schedule 

r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B) 

time 



30 

Conflict Serializability 

•  Weaker notion of serializability 
•  Depends only on reads and writes 
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Conflict Serializability 

Serializable Schedules 

Conflict 
Serializable 
Schedules 
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Conflict Serializable Schedule 

S S1 S2 Sn 

Serial Schedule Conflict Serializable 
Schedule 

Transformations: swap non-conflicting actions 
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Transformation: Example 

r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B) 

r1(A) w1(A) r2(A) r1(B) w2(A) w1(B) r2(B) w2(B) 
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Non-Conflicting Actions 

Two actions are non-conflicting if whenever they 
occur consecutively in a schedule, swapping them 
does not affect the final state produced by the 
schedule.  Otherwise, they are conflicting. 



35 

Conflicting or Non-Conflicting? 

(Work on paper: Example 1) 
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Conflicting Actions: General Rules 

•  Two actions of the same transaction 
conflict: 
–  r1(A) w1(B) 
–  r1(A) r1(B) 

•  Two actions over the same database 
element conflict, if one of them is a write 
–  r1(A) w2(A) 
– w1(A) w2(A)  
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Conflict Serializability Examples 

(Work on paper: Example 2 and 3) 
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Testing Conflict Serializability 

•  Construct precedence graph G for given 
schedule S 

•  S is conflict-serializable iff G is acyclic 
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Graph Theory 101 
Directed Graph: 

Nodes 
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Graph Theory 101 
Directed Graph: Edges 
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Graph Theory 101 
Directed Graph: 

Cycle 
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Graph Theory 101 
Directed Graph: Not a cycle 
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Graph Theory 101 

Acyclic Graph: A graph with no cycles 
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Graph Theory 101 
Acyclic Graph: 
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Testing Conflict Serializability 

•  Construct precedence graph G for given 
schedule S 

•  S is conflict-serializable iff G is acyclic 
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Precedence Graph 

•  Precedence graph for schedule S: 
– Nodes: Transactions in S 
– Edges:  Ti → Tj whenever 

•  S: … ri (X) … wj (X) … 
•  S: … wi (X) … rj (X) … 
•  S: … wi(X) … wj (X) … 

Note: not necessarily consecutive 
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Precedence Graph 

•  Ti → Tj whenever: 
– There is an action of Ti that occurs before a 

conflicting action of Tj. 
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Precedence Graph Example 

(Work on paper: Example 4) 
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Testing Conflict Serializability 

•  Construct precedence graph G for given 
schedule S 

•  S is conflict-serializable iff G is acyclic 



50 

Correctness of  
precedence graph method 

(Work on paper) 
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Serializability vs.  
Conflict Serializability 

(Work on paper: Example 5) 
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View Serializability 

•  A schedule S is view serializable if there 
exists a serial schedule S’, such that the 
source of all reads in S and S’ are the 
same. 
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View Serializability Example 

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B) 

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B)  

View Serializable Schedule 

Serial Schedule 
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View Serializability Example 

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B) 

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B)  

View Serializable Schedule 

Serial Schedule 
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View Serializability Example 

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B) 

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B)  

View Serializable Schedule 

Serial Schedule 
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View Serializability Example 

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B) 

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B)  

View Serializable Schedule 

Serial Schedule 
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View Serializability 

Serializable Schedules 

Conflict 
Serializable 
Schedules 

View Serializable 
Schedules 
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Problems 

•  Which schedules are “correct”? 
– Serializability theory 

•  How to build a system that allows only 
“correct” schedules? 
– Efficient procedure to enforce correctness 

serializable schedules 
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Scheduler 

DB 

Enforcing Serializability 

T1 T2 Tn 

reads/writes 
Strategy: 
Prevent precedence 
graph cycles? 
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Next 

•  Enforcing serializability 
– Locking-based techniques 
– Timestamp-based techniques 
– Validation-based techniques 


