
1

Shivnath Babu

Concurrency Control (II)

Data-Intensive Computing
Systems

2

How to enforce serializable schedules?

Option 1: run system, recording P(S);
 at end of day, check for P(S)
 cycles and declare if execution
 was good

3

Option 2: prevent P(S) cycles from
 occurring

 T1 T2 ….. Tn

Scheduler

DB

How to enforce serializable schedules?

4

A locking protocol

Two new actions:
 lock (exclusive): li (A)

 unlock: ui (A)

scheduler

T1 T2
lock
table

5

Rule #1: Well-formed transactions

Ti: … li(A) … pi(A) … ui(A) ...

6

Rule #2 Legal scheduler

S = …….. li(A) ………... ui(A) ……...

 no lj(A)

7

•  What schedules are legal?
What transactions are well-formed?
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Exercise:

8

•  What schedules are legal?
What transactions are well-formed?
S1 = l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)
r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

S2 = l1(A)r1(A)w1(B)u1(A)u1(B)
l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

S3 = l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)
l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

Exercise:

9

Schedule F

T1 T2
l1(A);Read(A)
A A+100;Write(A);u1(A)

 l2(A);Read(A)
 A Ax2;Write(A);u2(A)
 l2(B);Read(B)
 B Bx2;Write(B);u2(B)

l1(B);Read(B)
B B+100;Write(B);u1(B)

10

Schedule F

T1 T2 25 25
l1(A);Read(A)
A A+100;Write(A);u1(A) 125

 l2(A);Read(A)
 A Ax2;Write(A);u2(A) 250
 l2(B);Read(B)
 B Bx2;Write(B);u2(B) 50

l1(B);Read(B)
B B+100;Write(B);u1(B) 150

 250 150

A B

11

Rule #3 Two phase locking (2PL)

 for transactions

Ti = ……. li(A) ………... ui(A) ……...

no unlocks no locks

12

locks
held by
Ti

 Time
 Growing Shrinking
 Phase Phase

13

Schedule G

T1 T2
l1(A);Read(A)
A A+100;Write(A)
l1(B); u1(A)

 l2(A);Read(A)
 A Ax2;Write(A);l2(B)

delayed

14

Schedule G

T1 T2
l1(A);Read(A)
A A+100;Write(A)
l1(B); u1(A)

 l2(A);Read(A)
 A Ax2;Write(A);l2(B)

Read(B);B B+100
Write(B); u1(B)

delayed

15

Schedule G

T1 T2
l1(A);Read(A)
A A+100;Write(A)
l1(B); u1(A)

 l2(A);Read(A)
 A Ax2;Write(A);l2(B)

Read(B);B B+100
Write(B); u1(B)

 l2(B); u2(A);Read(B)
 B Bx2;Write(B);u2(B);

delayed

16

Schedule H (T2 reversed)

T1 T2
l1(A); Read(A) l2(B);Read(B)
A A+100;Write(A) B Bx2;Write(B)
l1(B) l2(A)
 delayed delayed

17

•  Assume deadlocked transactions are
rolled back
– They have no effect
– They do not appear in schedule

E.g., Schedule H =
 This space intentionally

 left blank!

18

Next step:

Show that rules #1,2,3 ⇒ conflict-
 serializable
 schedules

19

Conflict rules for li(A), ui(A):

•  li(A), lj(A) conflict
•  li(A), uj(A) conflict

Note: no conflict < ui(A), uj(A)>, < li(A), rj(A)>,...

20

Theorem Rules #1,2,3 ⇒ conflict
 (2PL) serializable
 schedule

To help in proof:
Definition Shrink(Ti) = SH(Ti) =

 first unlock
action of Ti

21

Lemma
Ti → Tj in S ⇒ SH(Ti) <S SH(Tj)

Proof of lemma:
Ti → Tj means that
 S = … pi(A) … qj(A) …; p,q conflict

By rules 1,2:
 S = … pi(A) … ui(A) … lj(A) ... qj(A) …

By rule 3: SH(Ti) SH(Tj)

So, SH(Ti) <S SH(Tj)

22

Proof:
(1) Assume P(S) has cycle
 T1 → T2 →…. Tn → T1

(2) By lemma: SH(T1) < SH(T2) < ... < SH(T1)

(3) Impossible, so P(S) acyclic
(4) ⇒ S is conflict serializable

Theorem Rules #1,2,3 ⇒ conflict
 (2PL) serializable
 schedule

23

•  Beyond this simple 2PL protocol, it is all
a matter of improving performance and
allowing more concurrency….
– Shared locks
– Multiple granularity
–  Inserts, deletes, and phantoms
– Other types of C.C. mechanisms

