Data-Intensive Computing Systems

Introduction to Query Processing

Shivnath Babu

Query Processing

Declarative SQL Query \rightarrow Query Plan

NOTE: You will not be tested on how well you know SQL. Understanding the SQL introduced in class will be sufficient (a primer follows). SQL is described in Chapter 6, GMUW.

Focus: Relational System (i.e., data is organized as tables, or relations)

SQL Primer

We will focus on SPJ, or Select-Project-Join Queries
Select <attribute list>
From <relation list>
Where <condition list>
Example Filter Query over R(A,B,C):
Select B
From R
Where R.A = "c" \wedge R.C > 10

SQL Primer (contd.)

We will focus on SPJ, or Select-Project-Join-Queries
Select <attribute list>
From <relation list>
Where <condition list>
Example Join Query over R(A,B,C) and S(C,D,E):
Select B, D
From R, S
Where R.A ="c" \wedge S.E $=2 \wedge$ R.C $=$ S.C
$\left.\mathrm{R}\left|\begin{array}{l|l|l|l|l|l|}\mathrm{A} & \mathrm{B} & \mathrm{C} \\ \hline \mathrm{a} & 1 & 10 \\ \mathrm{~b} & 1 & 20\end{array} \quad \mathrm{~S}\right| \mathrm{C}|\mathrm{D}| \mathrm{E} \right\rvert\,$

Select B,D
From R,S
Where R.A = "c" \wedge

Answer	B	D
2	x	

$S . E=2 \wedge$ R.C=S.C

- How do we execute this query?

Select B, D
From R,S
Where R.A = "c" ^ S.E = $2 \wedge$
R.C=S.C

- Do Cartesian product
- Select tuples
- Do projection

R X S	R.A	R.B	R.C	S.C	S.D	S.E
Select B, D	a	1	10	10	X	2
From R,S						
Where R.A = "c"	a	1	10	20	y	2
$\begin{aligned} & \text { ^ S.E }=2 \wedge \\ & \text { R.C=S.C } \end{aligned}$						
Bingo! \qquad	c	2	10	10	X	(2)

Relational Algebra - can be used to describe plans

Ex: Plan I

Relational Algebra Primer (Chapter 5, GMUW)

Select: $\sigma_{\text {R.A }}=" c "$ " $R . C=10$
Project: $\Pi_{B, D}$
Cartesian Product: R XS
Natural Join: $R \bowtie S$

Relational Algebra - can be used to
 Ex: Plan I describe plans

OR: $\left.\Pi_{B, D}\left[\sigma_{R . A=" c " \wedge ~ S . E=2 ~ \wedge ~ R . C ~=~ S . C ~}^{C S}\right)\right]$

Another idea:

Plan II

natural join

$$
\sigma_{R . A}=" c " \quad \sigma_{S . E}=2
$$

Select B,D
From R,S
Where R.A = "c" $\boldsymbol{\wedge}$ $S . E=2 \wedge$ R.C=S.C

From R,S
Where R.A = "c" ^
$S . E=2 \wedge$ R.C=S.C

Plan III

Use R.A and S.C Indexes
(1) Use R.A index to select R tuples with R.A = "c"
(2) For each R.C value found, use S.C index to find matching tuples
(3) Eliminate S tuples $S . E \neq 2$
(4) Join matching R,S tuples, project B, D attributes, and place in result

parse

parse tree

Query rewriting

statistics
\downarrow logical query plan
Query
Optimization
Physical plan generation
\downarrow physical query plan
execute
\downarrow result

Example Query

Select B, D
From R,S
Where R.A = "c" ^ R.C=S.C

Example: Parse Tree

Along with Parsing ...

- Semantic checks
- Do the projected attributes exist in the relations in the From clause?
- Ambiguous attributes?
- Type checking, ex: R.A > 17.5
- Expand views

Initial Logical Plan

Select B,D
From R,S
Where R.A = "c" ^
R.C=S.C

$$
\pi_{B, D}
$$

$\pi_{B, D}$

Relational Algebra: $\Pi_{B, D}\left[\sigma_{R . A=" c " \wedge R . C=s . C}(R X S)\right]$

Apply Rewrite Rule (1)

$\Pi_{\mathrm{B}, \mathrm{D}}\left[\sigma_{\mathrm{R} . \mathrm{C}=\mathrm{S} . \mathrm{C}}\left[\sigma_{\mathrm{R} . \mathrm{A}={ }^{* c^{\prime \prime}}}(\mathrm{RXS})\right]\right]$

Apply Rewrite Rule (2)

$\Pi_{\mathrm{B}, \mathrm{D}}\left[\sigma_{\mathrm{R} . \mathrm{C}=\mathrm{S} . \mathrm{C}}\left[\sigma_{\mathrm{R} . \mathrm{A}={ }^{* c^{\prime \prime}}}(\mathrm{R})\right] \times \mathrm{S}\right]$

Apply Rewrite Rule (3)

Some Query Rewrite Rules

- Transform one logical plan into another - Do not use statistics
- Equivalences in relational algebra
- Push-down predicates
- Do projects early
- Avoid cross-products if possible

Equivalences in Relational Algebra

$R \bowtie S=S \bowtie R \quad$ Commutativity
$(R \bowtie S) \bowtie T=R \bowtie(S \bowtie T)$ Associativity

Also holds for: Cross Products, Union, Intersection
$R \times S=S \times R$
$(R \times S) \times T=R \times(S \times T)$
$R \cup S=S U R$
$R U(S \cup T)=(R \cup S) U T$

Apply Rewrite Rule (1)

$\Pi_{\mathrm{B}, \mathrm{D}}\left[\sigma_{\mathrm{R} . \mathrm{C}=\mathrm{S} . \mathrm{C}}\left[\sigma_{\mathrm{R} . \mathrm{A}={ }^{* c^{\prime \prime}}}(\mathrm{RXS})\right]\right]$

Rules: Project

Let: $\mathrm{X}=$ set of attributes

$$
\begin{aligned}
& Y=\text { set of attributes } \\
& X Y=X \cup Y
\end{aligned}
$$

$$
\left.\pi_{x y}(R)=\pi_{x[0<y}(R)\right]
$$

Rules: $\sigma+\bowtie$ combined

Let $p=$ predicate with only R attribs $q=$ predicate with only S attribs $\mathrm{m}=$ predicate with only R,S attribs
$\sigma_{p}(R \bowtie S)=\left[\sigma_{p}(R)\right] \bowtie S$

$$
\sigma_{q}(R \bowtie S)=\quad R \bowtie\left[\sigma_{q}(S)\right]
$$

Rules: $\sigma+\bowtie$ combined (continued)

$\sigma_{p \wedge q}(R \bowtie S)=\left[\sigma_{p}(R)\right] \bowtie\left[\sigma_{q}(S)\right]$
$\sigma_{\text {р } \wedge q \wedge m ~}(R \bowtie S)=$

$$
\sigma_{m}\left[\left(\sigma_{p} R\right) \bowtie\left(\sigma_{q} S\right)\right]
$$

$\sigma_{p v q}(R \bowtie S)=$

$$
\left[\left(\sigma_{\mathrm{P}} \mathrm{R}\right) \bowtie \mathrm{s}\right] \cup\left[\mathrm{R} \bowtie\left(\sigma_{\mathrm{q}} \mathrm{~S}\right)\right]
$$

Which are "good" transformations?

$\square \sigma_{\mathrm{p} 1 \wedge \mathrm{p} 2}(\mathrm{R}) \rightarrow \boldsymbol{\sigma}_{\mathrm{p} 1}\left[\sigma_{\mathrm{p} 2}(\mathrm{R})\right]$
$\square \sigma_{p}(R \bowtie S) \rightarrow\left[\sigma_{p}(R)\right] \bowtie S$
$\square R \bowtie S \rightarrow S \bowtie R$
$\square \pi_{x}\left[\sigma_{p}(R)\right] \rightarrow \pi_{x}\left\{\sigma_{p}\left[\pi_{x z}(R)\right]\right\}$

Conventional wisdom: do projects early

Example: R(A,B,C,D,E)

$$
P:(A=3) \wedge(B=" c a t ")
$$

$\pi_{E}\left\{\sigma_{p}(R)\right\} \quad$ vs. $\quad \pi_{E}\left\{\sigma_{p}\left\{\pi_{A B E}(R)\right\}\right\}$

But: What if we have A, B indexes?

$$
\mathrm{B}=\text { "cat" } \rightarrow
$$

Bottom line:

- No transformation is always good
- Some are usually good:
- Push selections down
- Avoid cross-products if possible
- Subqueries \rightarrow Joins

Avoid Cross Products (if possible)

Select B,D
From R,S,T,U
Where R.A = S.B \wedge
R.C=T.C $\wedge R . D=U . D$

- Which join trees avoid cross-products?
- If you can't avoid cross products, perform them as late as possible

More Query Rewrite Rules

- Transform one logical plan into another - Do not use statistics
- Equivalences in relational algebra
- Push-down predicates
- Do projects early
- Avoid cross-products if possible
- Use left-deep trees
- Subqueries \rightarrow Joins
- Use of constraints, e.g., uniqueness

Query rewriting

statistics
\downarrow Best logical query plan

Physical plan generation

\downarrow Best physical query plan

execute

\downarrow result

Physical Plan Generation

Best logical plan

Physical Plan Generation

Operator Plumbing

R

- Materialization: output of one operator written to disk, next operator reads from the disk
- Pipelining: output of one operator directly fed to next operator

Materialization

Iterators: Pipelining

\rightarrow Each operator supports:

- Open()
- GetNext()
- Close()

Iterator for Table Scan (R)

```
Open() {
    /** initialize variables */
    b = first block of R;
    t = first tuple in block b;
}
Close() {
    /** nothing to be done */
}
```

```
GetNext() {
```

GetNext() {
IF (t is past last tuple in block b) {
IF (t is past last tuple in block b) {
set b to next block;
set b to next block;
IF (there is no next block)
IF (there is no next block)
/** no more tuples */
/** no more tuples */
RETURN EOT;
RETURN EOT;
ELSE t = first tuple in b;
ELSE t = first tuple in b;
}
}
/** return current tuple */
/** return current tuple */
oldt = t;
oldt = t;

```
    set t to next tuple in block b;
```

 set t to next tuple in block b;
 RETURN oldt;
 RETURN oldt;
 }

```
}
```


Iterator for Select

Open() \{
/** initialize child */
Child.Open();
\}
Close() \{
/** inform child */
Child.Close();

GetNext() \{
LOOP:
$\mathrm{t}=$ Child.GetNext();
IF ($\mathrm{t}==\mathrm{EOT}$) \{
/** no more tuples */
RETURN EOT;
\}
ELSE IF (t.A == "c") RETURN t; ENDLOOP:

Iterator for Sort

GetNext() \{ IF (more tuples) RETURN next tuple in order; ELSE RETURN EOT;

Open() \{
/** Bulk of the work is here */
Child.Open();
Read all tuples from Child and sort them

Close() \{
/** inform child */
Child.Close();

Iterator for Tuple Nested Loop Join

- TNLJ (conceptually)
for each $r \in \operatorname{Lexp}$ do
for each $s \in \operatorname{Rexp}$ do
if Lexp.C = Rexp.C, output r,s

Example 1: Left-Deep Plan

Question: What is the sequence of getNext() calls?

Example 2: Right-Deep Plan

Question: What is the sequence of getNext() calls?

Cost Measure for a Physical Plan

- There are many cost measures
- Time to completion
- Number of I/Os (we will see a lot of this)
- Number of getNext() calls
- Tradeoff: Simplicity of estimation Vs. Accurate estimation of performance as seen by user

