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SUMMARY

The environment significantly influences the
dynamic expression and assembly of all com-
ponents encoded in the genome of an organism
into functional biological networks. We have
constructed a model for this process in Halo-
bacterium salinarum NRC-1 through the data-
driven discovery of regulatory and functional
interrelationships among �80% of its genes
and key abiotic factors in its hypersaline envi-
ronment. Using relative changes in 72 transcrip-
tion factors and 9 environmental factors (EFs)
this model accurately predicts dynamic tran-
scriptional responses of all these genes in 147
newly collected experiments representing com-
pletely novel genetic backgrounds and environ-
ments—suggesting a remarkable degree of net-
work completeness. Using this model we have
constructed and tested hypotheses critical to
this organism’s interaction with its changing
hypersaline environment. This study supports
the claim that the high degree of connectivity
within biological and EF networks will enable
the construction of similar models for any
organism from relatively modest numbers of
experiments.

INTRODUCTION

Rapid DNA sequencing technology has provided access to

a large number of complete genome sequences from di-

verse and often poorly characterized organisms. The

hope is to use this information for engineering new biotech-
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nological solutions to diverse problems spanning bioen-

ergy, bioremediation, and medicine. In principle, it is a

reasonable expectation to re-engineer new processes by

selectively combining otherwise distinct biochemical ca-

pabilities encoded in different genomes. However, in reality

this will only be possible when we have a sophisticated

understanding of how the proteins encoded in each individ-

ual genome dynamically assemble into biological circuits

through interactions with the environment. Given that in ex-

cess of 500 genomes have already been sequenced and lit-

tle biological information exists for most of these organ-

isms, a classical gene-by-gene approach is inefficient to

accomplish this. Furthermore, since every organism is

unique, it is impractical to rely on accumulated sets of

known interactions from select model systems to construct

really detailed models. A data-driven systems approach,

on the other hand, is ideally suited to tackle this problem.

An important goal of applying systems approaches in

biology is to understand how a simple genetic change or

environmental perturbation influences the behavior of an

organism at the molecular level and ultimately its pheno-

type. High-throughput technologies to interrogate the

transcriptome, proteome, protein-protein, protein-DNA

interactions, and so forth, present a powerful toolkit to

accomplish this goal (DeRisi et al., 1997; Eichenberger

et al., 2004; Laub et al., 2000; Liu et al., 2003; Masuda

and Church, 2003). However, each of these individual

data types captures an incomplete picture of global cellu-

lar dynamics. Therefore, these data need to be integrated

appropriately to formulate a model that can quantitatively

predict how the environment interacts with cellular

networks to effect changes in behavior (Facciotti et al.,

2004; Faith et al., 2007; Kirschner, 2005; Kitano, 2002).

Accurate prediction of quantitative behavior is the ultimate

test of our understanding of a given system that will enable

re-engineering of cellular circuits. To this end, we have
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coordinated the integrated development and implementa-

tion of experimental and computational approaches to

construct a predictive gene regulatory network model

covering �80% of the transcriptome of Halobacterium

salinarum NRC-1, a free-living cell.

H. salinarum NRC-1 represents a class of poorly studied

organisms (Archaea) and as such provides an explicit

demonstration of how systems approaches can be used

to rapidly characterize the already large and growing num-

ber of newly sequenced organisms. It also provides

a unique window into molecular mechanisms underlying

fascinating response physiologies in extreme environ-

ments such as above boiling temperatures and in deep

sea ocean vents. Specifically, H. salinarum NRC-1 thrives

in an environment of �4.5 M salinity and can be expected

to provide insights into evolutionary adaptation for survival

in high-salinity-induced low-water activity, which pre-

cludes growth of most organisms (Grant, 2004). Like

most organisms it is also subject to daily and seasonal

changes in many environmental factors (EFs), and one

could expect it to have regulatory circuits that effectively

negotiate these complex and often stressful conditions.

From a practical standpoint, all these physiological capa-

bilities are encoded in �2400 nonredundant genes in

a very compact and easily manipulable 2.6 Mbp genome

(Ng et al., 2000). However, prior to this study only two reg-

ulons were characterized in this organism (Baliga et al.,

2001; Hofacker et al., 2004). Consequently, we explored

the value of a systems approach to rapidly discover and

characterize a significant fraction of the gene regulatory

network associated with the intercoordination of physio-

logical processes in this organism in differing environmen-

tal and genetic backgrounds.

Since the power of a systems approach is in integrating

as much information (old and new) into a unified model, in

this study we have used data from whole-genome micro-

array analysis, genome-wide binding location analysis for

eight transcription factors (TFs), mass spectrometry-

based proteomic analysis, protein structure predictions,

computational analysis of genome structure and protein

evolution, and also data from public resources such as

KEGG (Kanehisa, 2002) and STRING (von Mering et al.,

2005). While some of these data are from prior studies

(albeit our own recent work), a large fraction of the data, in-

cluding 234 out of the 413 microarray experiments, were

collected exclusively for this study to cover transcriptional

responses to a spectrum of genetic and environmental

perturbations. More importantly, all of the hypotheses con-

structed from the network model were verified with new

data that were not used for its construction.

RESULTS AND DISCUSSION

EGRIN: A Dynamic Model of Transcriptional
Control of Cellular Physiology in H. salinarum

NRC-1

The basic premise of our approach was to perturb the

cells (genetically or environmentally), characterize their
Cell
growth and/or survival phenotype, quantitatively measure

steady-state and dynamic changes in mRNAs, assimilate

these changes into a network model that can recapitulate

all observations, and, finally, experimentally validate hy-

potheses formulated from the model. This approach re-

quired the integrated development and implementation

of computational and experimental technologies (Figure 1)

and consisted of the following steps (see Experimental

Procedures and Supplemental Data available online for

details):

1 Sequence the genome and assign functions to

genes using protein sequence and structural similar-

ities (Bonneau et al., 2004; Ng et al., 2000).

2 Perturb cells by changing relative concentrations of

EFs and/or gene knockouts (Table S1) (Baliga et al.,

2004; Kaur et al., 2006; Kottemann et al., 2005).

3 Measure the resulting dynamic and/or steady-state

transcriptional changes in all genes using microar-

rays (Table S2 and Figure S1) (Baliga et al., 2004;

Kaur et al., 2006; Whitehead et al., 2006).

4 Integrate diverse data (mRNA levels, evolutionarily

conserved associations among proteins, metabolic

pathways, cis-regulatory motifs, etc.) with the cMon-

key algorithm to reduce data complexity and identify

subsets of genes that are coregulated in certain

environments (biclusters) (Reiss et al., 2006).

5 Using the machine learning algorithm Inferelator

construct a dynamic network model for influence

of changes in EFs and TFs on the expression of cor-

egulated genes (Bonneau et al., 2006).

6 Explore the network with Gaggle, a framework for

data integration and software interoperability (Shan-

non et al., 2006), to formulate and then experimen-

tally test hypotheses to drive additional iterations

of steps 2–6.

Using this approach we collectively analyzed transcrip-

tional responses to individual and combinatorial perturba-

tions in 10 EFs including light, oxygen, UV radiation,

gamma radiation, manganese (Mn), iron (Fe), cobalt (Co),

nickel (Ni), copper (Cu), and zinc (Zn) and 32 genes includ-

ing TFs, signal transducers, and metabolic enzymes

(Tables S1 and S2). This classified 1929 of the total 2400

predicted genes into 300 biclusters that were often highly

enriched in genes with known metabolic processes (Table

S3). Each of these biclusters represents a subset of genes

that are potentially coregulated in a defined set of environ-

mental conditions. We then constructed subcircuits that

model expression changes in each of these biclusters as

a function of corresponding changes in 72 TFs (Table S4)

and 9 EFs (although Co was included as a potential predic-

tor it did not make it into the final network). The resulting

model is a set of equations that can take as input measured

changes in a few TFs and/or EFs to predict kinetic and

steady-state transcriptional changes in �80% of genes

in this organism with an average (Pearson) correlation of

�0.8 to their actual measured changes. Importantly, this
131, 1354–1365, December 28, 2007 ª2007 Elsevier Inc. 1355



Figure 1. Systems Approach for Predic-

tive Modeling of Cellular Responses

Subsequent to genome sequencing there were

two major interconnected and iterative compo-

nents: experimentation and computation fol-

lowed by data visualization and analyses.

Within the first component the major efforts

included computational genomic analyses for

discovering functional associations among

proteins (black boxes); putative functional

assignment to proteins using sequence- and

structure-based methods (blue boxes);

and high-throughput microarray, proteomic,

and ChIP-chip assays on genetically and/or

environmentally perturbed strains (red boxes).

All data (with the exception of proteomic and

ChIP-chip data) from these approaches along

with associated records of experiment design

(green boxes) were analyzed with regulatory

network inference algorithms (purple box).

The resulting EGRIN was explored along with

underlying raw data using software visualiza-

tion tools within Gaggle (yellow box), which en-

ables seamless software interoperability and

database integration. Gaggle also provides

a cost-effective interface to third party tools

and databases. This manual exploration and

analysis enabled hypothesis formulation and

provided feedback for additional iterations of

systems analyses.
predictive capability reduces significantly when the time

component is removed from the model, strongly suggest-

ing that a significant fraction of the influences have causal

properties (Bonneau et al., 2006). Although we provide ev-

idence that some of the regulatory influences are mediated

directly via TF-DNA interactions, we expect that a large

fraction, especially EF influences, act indirectly, for exam-

ple, via interactions with signal-transducing environmental

sensors. We, therefore, refer to this network as environ-

ment and gene regulatory influence network (EGRIN).

The dominant influence of the environment on the as-

sembly of EGRIN was evident in two observations. First,

we find that many of our strongest predicted interaction

terms represent interactions between EFs and TFs—

implying that the activity of the relevant TFs is dependent

on presence of certain environmental conditions. Second,

we observe that the transcription of 423 genes in 70 biclus-

ters is predicted to be influenced by changes in one or more

of the 9 EFs. With a few selected examples we discuss be-

low both how EGRIN recapitulates and extends our under-

standing of biological processes we have previously stud-

ied—providing a mechanistic understanding of relevant

interrelationships—and as well how it has generated in-

sights into fascinating new biology of H. salinarum NRC-1.

Coregulated Modules within EGRIN Recapitulate

and Extend Known Biology

A central aspect of this integrated effort is the data-driven

grouping of genes into biologically meaningful biclusters.

A good example of new biological insight discovered

through integration of diverse data is provided through
1356 Cell 131, 1354–1365, December 28, 2007 ª2007 Elsevie
the analysis of energy production in H. salinarum NRC-1.

Prior knowledge (gathered from literature and our own

studies) has shown that three of the four known halobac-

terial energy production processes (arginine fermentation,

phototrophy [using bacteriorhodopsin], and dimethyl sulf-

oxide [DMSO] respiration) operate in anoxic conditions,

and the fourth (oxidative phosphorylation) requires oxic

conditions (Baliga et al., 2002; Muller and DasSarma,

2005; Ruepp and Soppa, 1996). Specifically, we observed

that all five genes of the phototrophy regulon (bop, blp,

brp, bat, and crtB1) and the 6 genes responsible for

DMSO respiration (dmsR/E/A/B/C/D) (Muller and Das-

Sarma, 2005) cocluster within the 29 gene bicluster #208

(bc208) (Figure S2 and Table S5A), suggesting that these

processes are coregulated under certain environmental

conditions (Reiss et al., 2006). The composition of bc208

also suggested that the phototrophy regulon includes 9

additional genes. The evidence for this hypothesized

expansion was that the promoters of these genes contain

the putative binding site for the phototrophy regulator Bat

(AtaCcCcAtgtgtTTGggTgTT-, p < 10�10; Baliga and Das-

Sarma, 1999; Table S5B); they are connected to the char-

acterized phototrophy genes by one or more of three

types of functional associations (operons, conserved

chromosomal linkages across diverse organisms, and

similar phylogeny); and they are coexpressed with the

phototrophy genes under the conditions included in

bc208 (Figure S2). Also, these 9 additional genes are not

present in any other biclusters, suggesting that they may

be exclusively associated with the phototrophy process.
r Inc.



This is an important contribution because it stresses the

power of global systems approaches to reveal new

aspects of biology by suggesting that a process we previ-

ously considered well understood still has a potentially

large number of uncharacterized genes associated with it.

Although phototrophy and DMSO respiration were both

known to be associated with anoxic metabolism, little was

known about their operational relationships. The analysis

of bc208 shows that while phototrophy and DMSO respi-

ration genes appear to be coregulated under some envi-

ronmental conditions, their expression diverges under

others. While we are fairly certain that the regulation of

phototrophy genes is mediated by Bat (Baliga et al.,

2001), the absence of the putative Bat-binding site in

DMSO metabolism-related genes in bc208 suggests that

coregulation of these two processes under certain condi-

tions may be either an indirect influence of Bat function or

due to factors other than Bat that are common to both sets

of genes. The motif search discovered at least two other

promoter motifs that appear to be shared by all DMSO

and phototrophy genes and represent putative binding

sites for regulatory proteins common to both pathways.

We predict that the combinatorial logic with which these

various regulators operate is responsible for the condi-

tional coregulation of the two processes.

EGRIN Predicts Novel Regulatory Control

for Known Biological Processes

The Inferelator algorithm uncovers TF and EF influences

on the expression of genes in biclusters. Transcriptional

influences may be of three types: (1) direct influences, in

which a TF acts through physical interactions with pro-

moters of genes in the bicluster, as was the case in the

previous example, wherein presence of a putative Bat-

binding site in conjunction with genetic analyses (Baliga

and DasSarma, 1999; Baliga et al., 2001) suggests that

Bat directly influences the expression of phototrophy

genes; (2) indirect influences, where a TF might act

through a secondary TF; or (3) via an unknown mechanism

that leads to the coexpression of the TF and genes in

a bicluster. EF influences, on the other hand, mostly act

via environment-sensitive TFs, or through signaling pro-

cesses that direct changes in transcription and thus are

always indirect (Figure S3A). Understanding the possible

nature of these influences allows one to formulate testable

hypotheses to characterize the regulatory mechanisms in

the appropriate environmental context.

A good example of how TF and EF influences are inte-

grated to describe the transcriptional changes in biclus-

ters is provided by analyzing bc66 (Table S6 and Figures

S3B and S3C). The transcriptional behavior of the 34

genes in bc66, including cytochrome oxidase, ribosomal

proteins, and RNA polymerase, is nearly perfectly mod-

eled by corresponding changes of four factors—two EFs

(oxygen and light) and two TFs (Cspd1 and TFBf)

(Figures 2A and 2B). We were able to further characterize

the influence of oxygen on the expression of these genes

by analyzing data from a controlled experiment in which

only oxygen was perturbed (Figure 2C). Meanwhile inde-
Cell
pendent ChIP-Chip experiments showed that TFBf inter-

acted physically with a significant number of promoters

in this biclusters (i.e., promoters of 24 out of 34 genes,

p < 10�10) (Figure 2D) (Facciotti et al., 2007). This fact

strongly suggests that TFBf acts to influence the expres-

sion of these genes directly. In fact, of the 181 genes

whose expression is modeled in EGRIN as a function of

TFBf, promoters of at least 62 genes have binding sites

for TFBf, implying a significant relationship between the

statistically learned influence and actual promoter associ-

ation (p < 10�4). For a subset of genes under the direct

influence of TFBf (24 genes in bc66), EGRIN has now pro-

vided an environmental context in which to further investi-

gate the regulatory mechanisms. This predicted central

role of tfbF in control of these critical functions was further

substantiated by our inability to construct a viable knock-

out strain for this gene (Facciotti et al., 2007). In a similar

manner, we were also able to assign specialized regula-

tory functions to two additional members of the seven

gene TFB family (TFBb and TFBg) (Table 1; Facciotti

et al., 2007; see Supplemental Data for details). While

the regulatory influences of oxygen and TFBf on the

expression of genes in bc66 seem relatively clear, the

roles for light and Cspd1 are still to be determined. It is

particularly interesting that the influence of TFBf acts

through an AND logic gate with light, implying that the

influence of TFBf on these genes is somehow dependent

on the presence of light. This type of information provides

valuable environmental context for further investigating

the function of this general transcription factor (GTF).

EGRIN Connects Biological Processes

in Previously Uncharacterized Combinatorial

Relationships

The assembly of the regulatory influence subcircuits for all

biclusters into the complete EGRIN has reconstructed

known relationships among cellular processes that are

connected in metabolic networks and play complemen-

tary roles (Figure S4). More importantly, based on the

confidence gained from recapitulating these known rela-

tionships, we can investigate the architecture of EGRIN

to discover new experimentally testable relationships.

We illustrate this point by selecting genes distributed

across 9 biclusters (bc20, bc28, bc45, bc48, bc61, bc75,

bc76, bc163, and bc174) that bring together components

of pyruvate metabolism, glutamate-glutamine metabo-

lism, and ATP synthesis as well as some accessory func-

tions required for enzyme cofactor biosynthesis and raw

material transport to support these metabolic processes

(Figure S5 and Table S7). The predicted subnetwork con-

trolling these biclusters is presented in Figure 3A.

It is useful to first look directly at genes that cocluster

into biclusters to understand what relevant information

this first level of analysis can provide. We note that genes

for cobalamin biosynthesis cocluster with components of

pyruvate dehydrogenase (PDH: pdhB and pdhA2) and

ribonucleotide reductase (NrdB2) into three distinct

biclusters (bc45, bc61, and bc174). The coclustering of

cobalamin biosynthesis genes with these two enzymes
131, 1354–1365, December 28, 2007 ª2007 Elsevier Inc. 1357



Figure 2. EGRIN Predicts Novel Regulatory Influences for Known Biological Processes

(A) Transcription of 34 genes encoding ribosomal proteins, RNA polymerase subunits, and cytochrome oxidase in bc66 are predicted to be positively

influenced (red arrows) by two EFs (oxygen and light) and two TFs (CspD1 and TFBf). The influences from TFBf and light act through an AND logic gate

(triangle).

(B) The mRNA profile of bc66 recreated by the combined TFs and environmental influences is nearly identical to the actual (averaged) mRNA levels

over 398 experiments.

(C) The transcript levels of genes in bc66 changes proportionally with changes in oxygen tension in controlled experiments. The profile represents

average transcription level changes of genes in bc66. The error bars indicate the standard deviation among mRNA level changes of genes in bc66.

(D) Crosscorrelation of predicted influences in EGRIN with physically mapped binding sites (Facciotti et al., 2007) suggests that the TFBf influence

may be directly effected via binding of this GTF to promoters of �70% of the genes (and operons) in bc66 (p < 10�10).
is consistent with their requirement of vitamin B12 as a

cofactor (Peel, 1962; Sintchak et al., 2002). However,

bc174 also contains phosphate (PO4) and Mn transport

genes that share a conserved cis-regulatory motif

(-AttTaGcttTAcAtA-; p < 10�6) with a cobalamin biosyn-

thesis operon. To our knowledge neither PO4 nor Mn

transport are directly related with cobalamin biosynthesis,

PDH, or NrdB2. Since genes can be present in multiple

biclusters (Figure S5) or share regulatory influences with

genes in other biclusters (Figure 3A), a simultaneous anal-

ysis of all genes in the 9 biclusters helps to connect the

dots and draw connections among these seemingly unre-
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lated processes. A metabolic reconstruction (Figure 3B)

from this integrated analysis illustrates that expression of

components of PDH, electron transport flavoproteins,

and ATP synthase genes cocluster in bc45, bc61, and

bc75 and are coordinated by common influences from

Snp, TBPe, KaiC, and VNG0320H (Figures 3A and 3B).

Further, phosphate-transport genes cocluster with gluta-

mine synthetase, peptide transport, and peptidase genes

in bc76. These functional overlaps and shared regulatory

influences among the biclusters just noted (bc45, bc61,

bc75, bc76, and bc174) link energy production (ATP

biosynthesis) with energy-requiring processes such as
er Inc.



Table 1. Novel Biological Insights Gleaned through Experimental Tests on EGRIN Predictions

Prediction Verification

TFBg influences transcription of 149 genes TFBg binds the promoters of 85 of these genes (p < 10�15)

TFBg regulates the sodium extrusion pump NhaC3 TFBg binds the promoter of NhaC3 and a perturbation in TFBg
function results in significant downregulation of this gene

TFBf influences transcription of 181 genes TFBf binds the promoters of 62 of these genes (p < 10�4)

TFBb influences transcription of 64 genes TFBb binds the promoters of 29 of these genes (p < 10�6)

Trh4 influences transcription of glutamine

synthetase (GlnA)

Trh4 binds the promoters of several glutamate metabolism genes

including GlnA

VNG1179C influences transcription of the primary

Cu-efflux mechanism

The VNG1179C knockout strain is Cu sensitive due to lack of

transcriptional activation of YvgX

A secondary Cu-efflux pump (ZntA) is transcriptionally
activated when the primary mechanism is suppressed

Transcription of zntA was upregulated at steady state in the
VNG1179C knockout strain

SirR influences transcription of Mn and

PO4 transport genes

A sirR knockout resulted in perturbed regulation of Mn and PO4

transport genes and poor growth under Mn stress

Siderophore biosynthesis is upregulated under Mn stress Transcript levels of siderophore biosynthesis genes are

significantly increased relative to the wild-type levels when the

SirR knockout strain is subjected to Mn stress

The unknown function protein VNG1459H is

associated with the phototrophy process

Unique peptides from this protein were detected only upon

enriching the membrane complexes responsible for phototrophy

VNG0019H is a transcriptional repressor of the B
subunit of DNA gyrase

Transcription of DNA gyrase B was upregulated in the VNG0019H
deletion strain

See Supplemental Data for details.
glutamine synthetase and nitrogen source import and

degradation (Figure 3B). The accessory processes (cobal-

amin biosynthesis, Co, and PO4 transport) provide

cofactors for these core functions, and, therefore, their

expression is also modeled within the same subcircuit.

Finally, the regulatory influences (activation or repression)

connecting biclusters also provide insight into the nature

of operational relationships among physiological pro-

cesses, such as the inverse regulatory relationship (via

TBPe AND KaiC and CspD1 AND PhoU) of glutamine

synthesis-associated processes (bc45, bc61, bc75,

bc76, bc163, and bc174) to those associated with its

breakdown (bc20, bc28, and bc48) (Figures 3 and S4).

Next, to experimentally verify some predicted regulatory

influences in this model we first tested the regulatory influ-

ence of Trh4 on glnA by localizing all of the genome-wide

binding sites for this TF using ChIP-chip analysis. Consis-

tent with EGRIN we observed a direct physical association

of Trh4 with the glnA promoter (Figure S6A). In fact, we dis-

covered that Trh4 also binds upstream to several other

genes of glutamate metabolism including succinate semi-

aldehyde dehydrogenase (GabD); carbamoyl phosphate

synthase (CarB); glutamine-hydrolyzing NAD+ synthase

(NadE); and carbamate kinase (ArcC), implicating Trh4

as a key regulator of nitrogen assimilation (Figures S6B

and S6C and Table S8). We also experimentally validated

the predicted coregulation of PO4 and Mn transport by

SirR. Specifically, deleting sirR results in perturbed

Mn-dependent transcriptional control of Mn and PO4

transport genes, which is manifested by poor survival un-
Ce
der Mn stress (Kaur et al., 2006). Thus, the three ap-

proaches for constructing regulatory networks, i.e., via

statistical learning, physical mapping, and genetic analy-

sis, provide complementary information that mechanisti-

cally characterizes the regulation of cellular physiology.

Thus, the regulatory influences within EGRIN provide

operational relationships among biclusters, i.e., disparate

coregulated segments of physiology. These are not

merely correlations among changes in these functions,

rather they are quantitative and temporal relationships.

In this particular example, this is demonstrated in the ca-

pacity of EGRIN to recapitulate transcriptional changes

in all 9 biclusters despite differences in how they relate

to each other in different environments (Figures 3C and

3D)—this would not be possible if the influences were sim-

ple correlations. Therefore, a reasonable conclusion from

this observation is that the dynamic relationships among

the different processes have been captured in the EGRIN

model. This architecture of intercoordination of different

biological processes is bound to be unique to every organ-

ism (Kirschner, 2005) and can only be learned through an

integrated systems approach employing environmental

and genetic perturbations as described herein.

EGRIN Accurately Predicts Transcriptional
Responses of over 1900 Genes to Completely
Novel TF and EF Perturbations
An important test of our global regulatory network model

and by proxy our understanding of H. salinarum NRC-1’s

response to the environment is represented in the
ll 131, 1354–1365, December 28, 2007 ª2007 Elsevier Inc. 1359



Figure 3. Regulatory Influences in EGRIN Model Intercoordination of Metabolic Processes in Diverse Environments

(A) Components of pyruvate metabolism, ATP synthesis, glutamate-glutamine metabolism, and accessory processes for transport of raw materials

and synthesis of cofactors are distributed across 9 biclusters (boxes) containing altogether 162 genes. Functions associated with each bicluster,

cis-regulatory motifs, and properties of biclusters are provided in the Supplemental Data (Table S7 and Figure S5). The expression of genes in these

9 biclusters is modeled by gene-regulatory influences (red: activate, green: repress, black: possible autoregulators coclustered with the regulated

genes) from 27 TFs (circular nodes) that operate individually or in combination through AND gates (connected by blue edges).

(B) Metabolic pathways were reconstructed on the basis of known and putative functions of genes in the 9 biclusters. Memberships of various

enzymes or enzyme subunits in each of the 9 biclusters in (A) are indicated with color-coded bars next to each step in the metabolic pathway

(see key in panel A for interpreting this color code).

(C) The dendogram represents relationships among the 9 biclusters based on the similarities among the averaged expression profiles of their member

genes. The differences in how the biclusters (cellular processes) relate to one another in varying environments are illustrated by highlighting relation-

ships between two bicluster groups: I (bc20, bc28, bc48) and II (bc76 and bc163).

(D) The incorporation of weighted regulatory influences with an associated time constant into EGRIN enables the architecture of the network to

change with the environment. As a consequence of this, despite environment-specified differences in relationships among cellular processes (C)

the same set of regulatory influences acting on each bicluster accurately models the averaged transcriptional changes of its constituent genes
1360 Cell 131, 1354–1365, December 28, 2007 ª2007 Elsevier Inc.



Figure 4. Prediction of Transcriptional Changes in New Environments

Histogram of Pearson correlations of predicted and measured mRNA levels of individual biclusters over the 266 experiments in the training set (A) and

the 131 newly collected experiments (B) are shown. (C) shows a comparison of correlations between predicted and measured mRNA levels for all 300

biclusters in training set and new data. (D) Transcription of the broad specificity metal ion efflux pump ZntA is upregulated under Cu stress in the

DVNG1179C strain background in which the primary efflux pump is transcriptionally inactivated (Dura3 is the parent strain in which knockouts are

constructed). This altered transcriptional response of ZntA to Cu was accurately modeled by the regulatory influences on bc189, which contains

this gene along with 7 other genes.
accuracy with which this model predicts transcriptional

responses to new EF and/or TF perturbations. To perform

such a test we compared the predicted transcriptomes

(relative transcript levels of 1929 genes) generated by

the EGRIN to the measured transcriptomes in 147 new

experiments that spanned (1) new combinatorial perturba-

tions in EFs that individually were part of the original train-

ing set; (2) EF perturbations that were not part of the train-

ing set, such as with the oxidative stress agent hydrogen

peroxide and the chemical mutagen ethyl methyl sulfo-

nate; and (3) new combinations of TF and EF perturba-

tions, including Mn stress response of a knockout strain

of SirR, an Mn-responsive TF; Cu stress response of

a knockout strain of VNG1179C, a Cu-responsive TF

(Kaur et al., 2006); and responses of GTF-perturbed

strains during cell growth in batch cultures (Table S2) (Fac-

ciotti et al., 2007). Since the first time points in each time

course experiment are only used for predicting transcrip-

tional changes in subsequent time points, the actual num-

ber of experiments for which we made predictions was

131 (147 experiments—16 first time point experiments).

We observed excellent concordance (i.e., a mean Pearson

correlation of �0.8) between the predicted and measured
Cell
mRNA levels over these 147 new studies (Figures 4A–4C)

with an error equivalent to that found over the original

training set (Figure S7). The network even predicted novel

responses to new combinations of EF and TF perturba-

tions, such as the steady-state transcriptional upregula-

tion of ZntA, a broad-specificity metal ion efflux pump

for Zn, Ni, Cu, and Co (Kaur et al., 2006), under increased

Cu stress upon genetic disruption of the primary Cu-spe-

cific efflux system (Figure 4D; see Supplemental Data for

additional examples and details).

We speculate that two nonexclusive properties of bio-

logical systems and the environment explain why the

EGRIN model predicts gene expression changes in new

experiments. First, even single perturbations in the train-

ing set actually represent multiple perturbations from the

molecular and cellular perspective. This occurs because

of the physicochemical relationships among EFs, which

cause a change in one EF to alter others. For example, in-

tense sunlight raises temperature to increase salinity via

evaporation that in turn reduces dissolved oxygen con-

tent. The cells sense these complex changes in multiple

EFs to elicit the appropriate response that deals both

with the primary perturbation as well as the resulting
even for responses to new EF perturbations (for example, responses to EMS and H2O2). Each of the nine graphs shows profiles of predicted versus

measured transcript level changes in each individual bicluster in environmental responses that were part of the training set as well as 147 completely

new experiments.
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secondary changes. A good example of this is the differ-

ential regulation of all three metal ion efflux pumps

(ZntA, YvgX, and Cpx) in experiments wherein metal ion

composition was not intentionally perturbed (data not

shown). Therefore, from an informational perspective,

each EF perturbation experiment actually provides the in-

formation regarding cellular responses to changes in mul-

tiple EFs. This information has been incorporated into the

EGRIN and can partly explain our ability to predict cellular

responses to new conditions. Second, since biological

networks (metabolic and gene regulatory networks) are

highly interconnected, cellular responses elicited from

the primary perturbation propagate throughout the cellular

networks via shared metabolites and common regulatory

elements. This design may have evolved to deal with the

anticipated secondary environmental perturbations noted

above or simply as a consequence of the interconnected-

ness of biological networks. EGRIN is, thus, a model of the

control of physiological responses to both primary EF or

TF perturbation as well as secondary changes in other re-

lated factors.

Insights into the Unique Lifestyle of a Halophilic
Archaeon
A biological network such as EGRIN is an essential re-

source for characterizing processes critical to the interac-

tion of an organism with its changing environment through

hypothesis formulation and testing. For instance, we have

experimentally validated circuits that manage Cu and Mn

stress; discovered a hierarchy of regulation among two al-

ternate mechanisms for Cu efflux; delineated specialized

functions of TF family members; and also assigned func-

tions to proteins with no characterized primary sequence

orthologs. All of these and many additional examples are

summarized in Table 1, and the details are provided in

Supplemental Data. While it is obvious that these are all

new insights into the biology of H. salinarum NRC-1, it is

important to note that several of these have a broader im-

pact on furthering our general understanding of gene reg-

ulation in Archaea, the most poorly studied of the three do-

mains of life. From a more general standpoint, they also

collectively highlight how a systems approach can help

design specific experimentally testable hypotheses within

the broader context of the global architecture of transcrip-

tion regulation. The ability to gather this level of informa-

tion regarding a poorly characterized organism from a sin-

gle study is significant and unprecedented.

Herein, we describe one example that highlights how

EGRIN has helped discover functional promoter interac-

tions of a TFB family of GTFs (Facciotti et al., 2007) in

the context of an important physiological property of

H. salinarum NRC-1 that enables its growth in high salinity.

Briefly, to withstand high salinity H. salinarum NRC-1, like

most halophilic archaea, maintains a high potassium/so-

dium (�4 M K+ and �1 M Na+) content in its cytoplasm,

which is in inverse proportion to the high Na+/K+ content

in its environment (�2.7 mM K+ and �4.3 M Na+). This

type of adaptation to hypersaline conditions is believed
1362 Cell 131, 1354–1365, December 28, 2007 ª2007 Elsevi
to be energetically favorable relative to alternate strate-

gies of synthesis and/or accumulation of organic osmo-

lytes such as glycine-betaine. Active Na+ extrusion and

K+ uptake are, therefore, central to this process and medi-

ated through coupling the transport of these ions to an

electrochemical proton (H+) gradient or at the expense

of ATP (Oren, 1999). The H. salinarum NRC-1 genome en-

codes at least five putative Na+/H+ antiporters (COG1757),

perhaps to buffer loss of a function central to its survival.

Despite this redundancy, we were able to formulate a spe-

cific hypothesis regarding transcription regulation of the

most abundantly expressed paralogs (NhaC3) (Table S9).

If we consider the ChIP-chip data alone this gene

appears to be potentially under the direct control of up

to five different TFBs (TFBb, c, d, f, and g) (Figure 5A).

However, according to EGRIN, among these five TFBs,

a perturbation in TFBg should have strongest influence

on the transcription of this gene (Figure 5B). We tested

this hypothesis by investigating the consequence of per-

turbing each of the seven TFBs (see Experimental Proce-

dures for details) on the transcription of nhaC3 during

growth. Indeed, only a perturbation in TFBg resulted in

significant downregulation of this active Na+ extrusion

pump during all stages of growth (Figure 5C). Although

we cannot rule out that the other TFBs (and possibly addi-

tional regulators) can as well mediate transcriptional con-

trol of this gene in other environmental settings, it is clear

from this example that the physical map of protein-DNA

interactions alone is insufficient to construct functional

biological circuits. More importantly, in a specific set of

environmental conditions identified by cMonkey we can

now further characterize the regulation of this pump rela-

tive to other aspects of physiology, such as phototrophy,

which is also directly influenced by TFBg and known to

establish a H+ gradient that drives the extrusion of Na+

(Lanyi, 1980). As EGRIN is refined through additional

rounds of experiment and analysis we expect that such cir-

cuits will be characterized to an extent that will eventually

enable the engineering of halophilicity into other organ-

isms, such as into crops for agriculture in arid climates.

Conclusions
Our choice of H. salinarum NRC-1 has helped highlight the

power of a systems approach for rapidly discovering new

biology in largely uncharacterized organisms. By observ-

ing the consequences of systematically perturbing this

organism with both genetic and environmental perturba-

tions we were able to construct statistically significant

and meaningful associations among most genes encoded

in the genome of this organism. However, transcriptional

control of �20% of all genes is not represented within

the biclusters in the EGRIN model. While this could be

due to technical limitations in measuring transcript level

changes of these genes, or absence of their differential

regulation in response to perturbations used in our stud-

ies, an important point to consider is that our model

does not yet account for a plethora of regulatory mecha-

nisms such as epigenetic modifications, small RNAs,
er Inc.



Figure 5. Perturbation in TFBg Function Results in Altered Regulation of the Na+/H+ Antiporter NhaC3

(A) The protein-DNA interaction map for five TFBs generated using ChIP-chip indicates the relative distribution of their binding sites upstream to their

own promoters and the promoter for nhaC3.

(B) According to cMonkey nhaC3 is coregulated with genes in five biclusters within EGRIN (bc2, bc3, bc12, bc16, bc50, and bc113). The average

expression changes of genes in four of these biclusters are modeled by corresponding changes in TFBg transcript levels; the circuit diagram shows

the Inferelator model for one of these biclusters (bc113).

(C) nhaC3 transcript levels during different phases of growth in five strains, each carrying a plasmid-borne copy of the respective cmyc-tagged tfb

gene (see Experimental Procedures for details). Functional binding of each of these engineered TFBs to cognate promoters was confirmed using

ChIP-chip (Facciotti et al., 2007). Considering that all of these strains also have a chromosomal wild-type copy of the engineered TFB, the downre-

gulation of nhaC3 in the cmyc-TFBg strain suggests that this is a dominant-negative mutant.
posttranslational protein modifications, and metabolite-

based feedback. The challenges associated with investi-

gating these important control mechanisms at a global

level are now being overcome through technological inno-

vations. Our approach to regulatory network inference is

extensible to incorporate these new data types and model

their associated control mechanisms to eventually com-

pletely model the entire regulatory circuit in this archaeon.

What is powerful about this approach is that it took under

6 years to move from genome sequence to this level of

understanding for a relatively poorly studied organism. In-

deed, it would be significantly quicker to implement the

same approach with a newly sequenced organism given

that much of the scientific methods including experimen-

tal procedures, algorithms, and software have been delin-

eated through our study.

This does bring up an obvious question of whether the

potential for enormous complexity of a biological system

will ever allow the construction of a complete model of

a cell. In this regard it has been favorably suggested, at

least in the context of metabolism, that despite this poten-

tial for complexity, a cell usually functions in one of few

dominant modes or states (Barrett et al., 2005). We spec-

ulate that this natural property of a biological system sim-

plifies the problem to inferring gene regulatory models for

its transitions among relatively few states. In addition, as

discussed earlier, the extensive connectivity within EF

and biological networks makes it tractable to effectively

construct a comprehensive model of cellular responses

to changes in multiple EFs from a modest number of

well-designed systematic perturbation experiments (Faith

et al., 2007; Hayete et al., 2007). We believe that this type

of a model will hold true for environmental responses of all

organisms and, more importantly, that it should be possi-

ble to construct such models solely from EF perturbation
Cel
experiments. This will be especially valuable in context

of organisms that currently lack tools for genetic analysis.

EXPERIMENTAL PROCEDURES

Genome Reannotation

A significant fraction (38%) of �2400 genes in H. salinarum NRC-1

could not be assigned any function using primary sequence-based

approaches (Ng et al., 2000). We overcame this hurdle by incorporat-

ing functional relationships among proteins from comparative geno-

mics (Bowers et al., 2004) as well as protein structure predictions to

detect similarities at a three-dimensional level to proteins and protein

domains in the Protein Data Bank (PDB) (Sussman et al., 1998). Using

this approach nearly 90% of all predicted genes had some meaningful

association with either a characterized protein, a protein family, or

a structural fold (Bonneau et al., 2004). Further, through analysis of

protein family signature or predicted structural matches we cataloged

a list of 128 putative TFs (14 general transcription factors [6 TATA-

binding proteins (TBPs), 7 transcription factor B (TFBs), and 1

transcription factor E alpha-subunit ortholog] and 114 putative

sequence-specific DNA-binding proteins).

Genetic and Environmental Perturbations

We compiled a list of EFs (oxygen, sunlight, transition metals [Mn, Fe,

Co, Ni, Cu, and Zn], UV radiation, and desiccation/rehydration [simu-

lated with gamma radiation]) that are major forces in the natural habitat

of H. salinarum NRC-1. Growth rate and survival characteristics in

varying concentrations or exposures of these EFs were characterized

to design the appropriate environmental perturbations (Baliga et al.,

2004; Kaur et al., 2006; Kottemann et al., 2005). Genetic perturbations

were also designed with either single gene in-frame deletions or non-

native expression of 32 genes including sensors, signal transducers,

response regulators, and enzymes functions that implicated them as

potentially important regulators of responses to these EFs (Table S1).

Transcriptome Analyses

Two hundred and sixty-six microarray experiments were used for

the construction of the network (see below), and 147 microarray exper-

imentswere used to validatepredictions from thenetwork. Roughly two-

thirds of the 266 microarray-based experiments probed environmental
l 131, 1354–1365, December 28, 2007 ª2007 Elsevier Inc. 1363



responses to different doses of the same EF and/or temporal responses

during acclimation to constant stress or recovery from a transitory

perturbation. The remaining studies investigated perturbed responses

in genetically perturbed strains (Table S2) (Baliga et al., 2004), gamma

radiation (Whitehead et al., 2006), transition metals (Kaur et al., 2006),

oxygen (Schmid et al., 2007), etc. All experiments that passed the statis-

tical tests (Figure S1) (Ideker et al., 2000) were archived along with a

digital log of growth conditions, genotypes, quantity and quality of

perturbation, and time information. This meta-data information was

used in the network inference procedure described in step 5. The

description for 147 new experiments is discussed in the text and in

Table S2.

Discovery of Coregulated Genes with cMonkey

The cMonkey algorithm iteratively scanned genes and/or conditions to

identify groups of genes that are putatively coregulated in certain

environmental conditions (biclusters) (Reiss et al., 2006). The probabil-

ity of adding a gene to a bicluster was prioritized by two additional

types of information: (1) its computationally predicted functional asso-

ciations with genes in a given bicluster and (2) match(es) in its promoter

to conserved cis-regulatory motif signatures detected by cMonkey in

the putative gene promoters within a particular bicluster. Both of these

constraints biased the composition of a bicluster to contain genes that

have a greater likelihood of biochemically functioning together (e.g.,

genes in the same biochemical pathway and/or sharing a common

motif in their promoter regions are more likely to be influenced by

the same EF and/or TF). Finally, a critical attribute of this procedure

is that it allows genes to belong to multiple biclusters to be consistent

with known properties of biological systems in which genes can partic-

ipate in multiple physiological functions depending on the condition or

state of the cell.

Construction of EGRIN with Inferelator

Using the Inferelator algorithm (Bonneau et al., 2006), we discovered

instances wherein individual or combinatorial changes in the concen-

trations of certain TFs (Table S4) and/or EFs (archived in the meta-

information from step 3) temporally preceded average transcriptional

changes within a given bicluster or a gene. Briefly, the Inferelator (1)

selects parsimonious models (i.e., minimum number of regulatory in-

fluences for each bicluster) that are predictive (Thorsson et al.,

2005); (2) explicitly includes the time dimension to discover causal in-

fluences; and (3) models combinatorial logic, i.e., interactions between

EFs and TFs and between pairs of TFs. The collection of the complete

set of regulatory influences connects all biclusters and genes into an

integrated EGRIN.

Data Visualization, Exploration, and Analysis with Gaggle

We used the Gaggle (Shannon et al., 2006) software and database

interoperability framework to interactively explore EGRIN in the con-

text of (1) underlying experimental data in a local database (SBEAMS

[http://www.sbeams.org]), (2) protein signatures (COG [Tatusov

et al., 2000], PFam [Bateman et al., 2000]), (3) metabolic pathways

(KEGG [Kanehisa, 2002]), (4) functional associations from an evolution-

ary standpoint, and (5) co-occurrence in scientific literature (STRING

[von Mering et al., 2005]).

Data Accessibility

Microarray and ChIP-chip data in this manuscript have been submitted

to NCBI GEO public repository. Proteomics data are available from the

Peptide Atlas website (http://www.peptideatlas.org/). The data, algo-

rithms, software, biclusters, and gene regulatory influence circuits

are also accessible at http://baliga.systemsbiology.net/egrin.php.

Supplemental Data

Supplemental Data include Supplemental Results, Supplemental

Experimental Procedures, eight figures, and nine tables and can be
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found with this article online at http://www.cell.com/cgi/content/full/

131/7/1354/DC1/.
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