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Abstract

Given the vast behavioral repertoire and biological complexity of
even the simplest organisms, accurately predicting phenotypes in
novel environments and unveiling their biological organization is a
challenging endeavor. Here, we present an integrative modeling
methodology that unifies under a common framework the various
biological processes and their interactions across multiple layers.
We trained this methodology on an extensive normalized compen-
dium for the gram-negative bacterium Escherichia coli, which
incorporates gene expression data for genetic and environmental
perturbations, transcriptional regulation, signal transduction, and
metabolic pathways, as well as growth measurements. Comparison
with measured growth and high-throughput data demonstrates
the enhanced ability of the integrative model to predict pheno-
typic outcomes in various environmental and genetic conditions,
even in cases where their underlying functions are under-
represented in the training set. This work paves the way toward
integrative techniques that extract knowledge from a variety
of biological data to achieve more than the sum of their parts in
the context of prediction, analysis, and redesign of biological
systems.
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Introduction

The development of an integrative genome-scale model is consid-
ered to be the Holy Grail of computational predictive modeling in
systems biology (Tomita, 2001). The potential of such a feat is trans-
formative and spans most areas of life science research: discovery of
novel properties and emerging behaviors at the organism level,

generating and testing predictable hypotheses in well-defined
simulated environments, guiding experimentation, and accelerating
the in-depth understanding of cellular physiology. Despite its utility,
whole-cell modeling across multiple scales remains elusive due to a
number of factors. First, even for well-studied organisms, we still
have a limited knowledge of the cellular machinery, pathways,
proteins, and their respective functions (Frishman, 2007; Hanson
et al, 2010). Furthermore, the complex interconnectivity and
interdependencies of cellular processes render their detailed
mapping a challenging task that is further hindered by the lack of
comprehensive quantitative data across different environmental
conditions. The latter is rapidly changing, however, due to the
technological advances in high-throughput sequencing that enable
the acquisition of an unprecedented amount of data that span all
aspects of cellular organization. Concomitantly, research advances
in the computational front have reached the level of maturity
needed for the analysis and integration of these datasets.

Early work in integrative modeling under one umbrella was
E-cell (Tomita et al, 1999), a modular software environment for
whole-cell simulation that included organelle sub-models (Yugi &
Tomita, 2004). More recently, genome-scale simulations were
performed to study complex phenomena, such as the emergence
of anticipatory behavior during evolution in varying
environments (Tagkopoulos et al, 2008), the noise contributions
of an inducible switch (Roberts et al, 2011) and the effect of
stochastic expression to metabolic variability (Labhsetwar et al,
2013). A whole-cell model of Mycoplasma genitalium, a human
urogenital parasite whose genome contains 525 genes and is
described by 28 cellular processes, was presented recently with
encouraging results on the prediction of cellular behavior (Karr
et al, 2012). A crucial tool for integrative modeling is network
inference algorithms, both unsupervised and supervised, which
can be used to generate topological models and consensus
networks from data (Basso et al, 2005; Faith et al, 2007; Mordelet
& Vert, 2008; Taylor et al, 2008; Zare et al, 2009; Marbach et al,
2010, 2012). Several methods have targeted the integration of
models across the transcriptional, proteomic, signal transduction,
and metabolomics layers (Reed et al, 2003, 2006; Covert et al,
2004; Duarte et al, 2004; Beltran et al, 2006; Joyce & Palsson,
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2006; Kresnowati et al, 2006; Becker et al, 2007; Feist et al, 2007;
Andersen et al, 2008; Feist & Palsson, 2008; Herrgard et al, 2008;
Carrera et al, 2012a,b).

Our aim here was to construct a phenomenological model for
bacterial organisms that integrates multiple layers of biological orga-
nization. We focused on a genome-scale model for Escherichia coli,
a gram-negative, facultative anaerobic model bacterium. E. coli
serves as an ideal candidate for multi-scale cell modeling, due to the
wealth of data and knowledge accumulated over the years, the easi-
ness to culture and manipulate experimentally, and its importance
in medical and biotechnological applications. Figure 1 depicts the
training-simulation-refinement methodology that can be used for
the construction of data-driven genome-scale models. Starting from
a collection of “omics” data (Fig 1A), cellular processes are divided
into modules, constructed from composite networks, and data-
driven sub-models that are ultimately integrated under a unifying
framework (Fig 1B). Parameters are trained so that the model
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optimally captures the observed relationships given an objective
function and a set of constraints, and the predictive ability of the
model is then assessed through a number of statistical tests
(Fig 1C). Such a model can be used to generate and test biological
hypotheses through simulations pertaining to genetic and environ-
mental perturbations that can subsequently be validated through
targeted experimentation (Fig 1D). A critical aspect of any data-
driven model is to identify the areas where further experimentation
is needed to accurately capture phenomena and biological
processes, so that targeted experiments can be performed to address
these shortcomings. The resulting experimental data are then inte-
grated to the training dataset, which in turn increase the predictive
power of the model.

Toward this goal, we constructed a normalized gene expression
(4,189 genes in 2,198 microarrays from 127 scientific articles),
signal transduction (151 regulatory pathways, 152 publications),
and phenomics (616 arrays) compendium (Fig 2). The constructed
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Figure 1. Overview of integrative modeling through targeted experimentation.

A Collection of training data across multiple layers of cellular organization and from various data sources.

B Development and training of a multi-scale model that integrates transcription, signal transduction and metabolism.
C Evaluation of model generalization via comparison between predicted and measured growth and expression data.
D Experimentally test hypotheses generated by the model and incorporate new measurements in the training set.
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Figure 2.

Integration of signal transduction, gene expression, metabolic and phenomics data within an integrative framework.

Links between databases, models, and knowledgebase to the computational methodologies depict the dependences between the various modules in the integrative

genome-scale model.

knowledgebase was then integrated with a recently published
E. coli metabolic model (2,583 reactions and 1,805 metabolites)
(Orth et al, 2011). The construction of this compendium led to
significantly improved predictions by highly ranked inference meth-
ods. To allow for genetic and environmental perturbations, we
developed a quadratic programming method coined as “Expression
Balance Analysis” (EBA) that takes into account genetic, capacity,
phenomenological, and environmental constraints to predict gene
expression. We extended the current models for flux boundary
calculations by developing a new method called “TRAnscription-
based Metabolic flux Enrichment” (TRAME) that accounts for both
metabolic and transcriptional interactions. Statistical tests and
subsequent experimental validation demonstrate the capacity of
this integrative model to predict environmental and genetic pertur-
bations beyond current stand-alone metabolic and expression (ME)
models.

© 2014 The Authors

Results
Genetic and environmental gene expression diversity

Genetic diversity analysis in EcoMAC shows that genetic perturba-
tions led to more diverse gene expression profiles than environmen-
tal changes (Kolmogorov—-Smirnov test P < 0.023; Mann-Whitney
test P < 107'%; Supplementary Fig S4A and B). In addition, different
types of genetic perturbations had a profoundly different expression
profile: the gene expression diversity observed in arrays of TF rewir-
ing experiments is more than 2.1-fold (P < 107'°) higher than in
arrays from single-TF perturbation experiments such as TF
knockouts or TF over-expressions. We did not observe significant
differences in the variability signatures when comparing arrays
of knockouts and over-expression experiments in TFs, enzymes,
or other genes. Nonetheless, genetic perturbations of TFs led to
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significantly higher expression diversity levels (Mann-Whitney test
P < 107'%; Kolmogorov-Smirnov test P < 10~'7) than other genes
(Supplementary Fig S4C and D). These results argue that transcrip-
tional rewiring of the existing transcriptional regulatory network
(TRN) tends to create larger ripple effects that reverberate across
the global transcriptional network, when compared to other single-
gene perturbations.
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Visualization of the gene targets present in EcoMAC reveals a
remarkably sparse landscape of genetic and environmental pertur-
bations that have been conducted so far (Fig 3A). Overlap of
EcoMAC and EcoST depicts clusters of TFs that are implicated in
sensing environmental states, such as variations in carbon, nitro-
gen, and phosphate sources, as well as oxygen, metals, and other
supplements (Fig 3B). The calculated effector strength in the whole
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Figure 3. Map of genetic perturbations, signal transduction pathways and inferred interactions.

A TRN of Escherichia coli including all transcriptional interactions experimentally verified. Color nodes represent genes identified as genetic perturbations in EcoMAC.
The TRN contains 1,591 genes (182 TFs representing a 55.5% of the total), and 3,704 transcriptional interactions. 97 of the 141 genetic perturbations fall within the

experimentally verified interactions and are shown here.

B STSs of Escherichia coli represented in the EcoST TRN. Nodes represent TFs that are related to carbon sources (red), metals (grey), acids (yellow), nitrogen sources
(orange), oxygen (blue), phosphate sources (green), or supplements such as amino acids or precursors of amino acids (light blue). All transcriptional interactions

between TFs are represented (416 regulations between 183 TFs).

C Number of transcriptional interactions with low, strong, and confirmed evidence and ROC/PR curves for predicted transcriptional activators/repressors (bottom
panels) and inferred interactions (top, right panel). The performance of three methods trained on EcoMAC (AUC = 0.73, AUPRC = 0.23) and 35 methods trained on the
809 arrays of DREAM 5 (AUC = 0.6, AUPRC = 0.23) is shown. The confirmed interactions in RegulonDB v8.1 constitute the golden standard.

D GO enrichment of the top 500 inferred interactions (0.45 precision threshold).

Source data are available online for this figure.
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spectrum of environment-sensing regulatory mechanisms reveals a
bias toward highly sensitive TF-effector pairs, where small changes
have major implications in cellular expression (Supplementary
Fig S9).

An integrative knowledgebase as a base to regulatory
network enrichment

We performed network analysis to tap on EcoMAC’s potential to
reveal novel interactions in E. coli’'s TRN. We used inference
methods that were highly ranked in the latest DREAM challenge to
capture distinct EcoMAC features by applying mutual information,
constrained regression, tree-based methods, and other statistical
techniques. Remarkably, inference of regulatory interactions based
on the EcoMAC compendium increased the performance of the
community classifier by 8 to 22%, depending on the number of
methods and golden standard used (Supplementary Fig S5). From
the top 500 computationally inferred interactions (precision cutoff
at 0.45, Fig 3C), the most enriched biological processes are
response to stimulus (222 interactions), locomotion and taxis (81
interactions), and cell, ciliar, or flagellar motility (33 interactions,
Fig 3D). Comparison of the Pearson correlation coefficient (PCC)
between the expression profiles of TFs and their targets to random
pairs shows the first to be significantly highly correlated
(Kolmogorov—Smirnov test P < 107'° and Mann-Whitney test
P <107'% Supplementary Fig S6) and with similar profiles for
both experimentally validated and computationally inferred
interactions, which reinforces the likelihood that these putative
interactions are indeed present in the respective experimental
conditions.

Expression Balance Analysis

Training a regression model on EcoMAC was found to be highly
predictive of positive (0.74 AUC) and negative (0.91 AUC) interac-
tions for arrays where TFs and genes were significantly correlated
(interactions with PCC > 0.75, Fig 3C). The EBA model was used to
predict genome-wide gene expression values under genetic and
environmental perturbations in EcoMAC (Supplementary Methods,
section 4.4). We analyzed the predictive power of EBA on the entire
gene expression profile or a subset of it, resulting in two evaluation
classes (global and local, respectively). For local evaluation, all
genes with a distance of two links or less from the perturbed gene
were considered. After parameter training (Supplementary Fig S12),
the EBA model was significantly more accurate in predicting global
expression profiles when compared to the null-model (Fig 4A and
B). Specifically, the 50 and 64 % of well-predicted arrays for genetic
and environmental perturbations, respectively, outperformed the
PCC average of all predictions (437 and 55 arrays evaluated, respec-
tively; Fig 4A, solid area; Fig 4B, blue points), whereas the null-
model is shown in (Fig 4A, hatched area; Fig 4B, red points). We
also assessed the effect of genetic and environmental constraints in
the EBA model by comparing its performance to EBA predictions
when no or random constraints are imposed. Although the perfor-
mance in both these cases is closer to that of the (constraint-driven)
EBA model, the latter results in better predictions (measured by the
number of arrays above the average PCC threshold) as shown in
Fig 4A (bottom panel). Furthermore, the EBA method was found to

© 2014 The Authors
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be robust to parameter perturbations (Supplementary Fig S13). Simi-
lar results were obtained when computationally inferred interactions
were included in the analysis (Supplementary Fig S14), and individ-
ual classes of genetic perturbations were taken into account
(Supplementary Fig S15).

We studied the performance of EBA by training random sub-sets
of transcriptional interactions (Supplementary Fig S16A and B). As
expected, the EBA local performance decreased significantly when
the TRN was constructed by using random interactions between TFs
and genes. Moreover, when interactions were excluded from the
TRN, an exponential decrease in performance on local profiles was
observed that is consistent with the scale-free nature of the TRN
network. A fivefold cross-validation argues that EBA is robust in the
size and nature of the training set (Supplementary Fig S16C and D).

Integrating transcription, fluxes, and metabolic models

Next, we used the E. coli metabolic model iJO1336 together with
Flux Variability Analysis (FVA) (Mahadevan & Schilling, 2003;
Gudmundsson & Thiele, 2010) and Flux Balance Analysis (FBA)
(Orth et al, 2011) to calculate the reaction fluxes and their bounds.
In order to test the metabolic model under various environmental
conditions, we simulated 100 random environments where cells
grew in minimal media and a growth-affecting parameter in abun-
dance or limitation (carbon sources, nitrogen, supplemental amino
acids, or metals). In all cases, the model provides a quantitative
measure of the variations in growth rate for the different environ-
mental perturbations (Supplementary Fig S17 and Supplementary
Dataset S6). TF and enzyme knockouts were found to be pheno-
typically more diverse than over-expressions, as shown in analysis
of the metabolic benefit under single (Supplementary Fig S18) and
multiple (Supplementary Fig S19) genetic perturbations. We then
used TRAME to integrate metabolic and transcriptional regulatory
networks by modifying the metabolic flux bounds (Supplementary
Methods, section 5).

Phenotypic predictions in an integrated model

To integrate all the models described above, we used a cost-benefit
scheme across the various layers to determine the genome-scale
gene expression profile, metabolic flux distribution, and growth
rate. The cost-benefit model outperformed growth predictions of
models that contained only benefit or cost-limited functions, with
PCC between predicted and measured phenotypes at 0.76
(P < 107?) for benefit-only model predictions versus 0.84 (P < 10~%)
in our model (Supplementary Fig S21). Interestingly, when inferred
interactions were added in the analysis, more arrays were well
predicted, leading to a higher PCC between predicted and measured
growth rates than when EBA was restricted only to experimental
interactions (PCC > 0.53, P <2:10~%; Supplementary Fig S21C).
Fig 4C shows high correlations between predicted and measured
growth rates for different categories of arrays in EcoMAC. The model
accurately predicted growth in all cases with PCC ranging from 0.8
(genetic perturbations; P <107'% to 0.99 (gene knockouts;
P<107'9).

Next, we assessed the predictive power of this work in compar-
ison with three recent M-models (Beg et al, 2007; Orth et al, 2011;
Adadi et al, 2012) and a ME-model (O’Brien et al, 2013) for E. coli,
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Figure 4. Quantitative assessment of Expression Balance Analysis.

A Percentage of arrays where EBA achieved a higher (solid bars), equal (non-solid bars with lines), or lower (non-solid bars with pattern) PCC between the predicted
and the measured expression profile, when compared to a randomized model. Three randomized models were considered: randomized EcoMAC expression profiles
(null-model, black bars), expression profiles that are derived by EBA that does not encode the environmental or genetic constraints of the expression profile under
investigation (dark green) and EBA-derived expression profiles with random genetic and/or environmental constraints (light green). Both genetic (left panel) and
environmental (right panel) perturbations were considered. The percentage of the arrays predicted by EBA with PCC higher than a threshold PCC (noted as TH,

calculated as the average over all predicted arrays) is denoted in the bottom panel. Bottom panel contains the number of well-predicted arrays with PCC higher than
the average. The comparison is performed for all well-predicted arrays (global), those within a distance of two links (local), and those local arrays with a PCC that is
statistically significant (P-value < 0.05; local*).

Predictive power of EBA for all genetic perturbations by using the null-model (black bars in panel A). Blue and red points show arrays in which the PCC between the
measured and predicted (EBA) expression profile is significantly higher (P < 0.05) or lower (NS, non-significant), respectively, than the PCC between the measured

6

expression profile and the null-model (i.e., random profiles from EcoMAC).

Phenotype predictions for arrays in EcoPhe compare different categories of perturbations (low vs high growth rate measured; genetic us environmental

perturbations; gene knockouts vs rewired networks) by using the integrative genome-scale model of Escherichia coli in which EBA with experimental and
inferred interactions predicted gene expression profiles. PCC corresponds to the correlation between the predicted and experimentally measured growth for

each category.

as well as to the first whole-cell model for M. genitalium (Karr et al,
2012). We used our integrative model to predict growth rates in 14
different batch cultures that can be captured by the model and gene
essentiality of all the 4,189 E. coli genes considered in our model
(Supplementary Dataset S11). Interestingly, the correlation between
measured and predicted growth rates by using our model
(PCC = 0.60, P-value =0.02) was higher and statistically more
significant than for two M-models (PCC = 0.20, P-value = 0.49 for
the iJO1366 yield model presented in (Orth et al, 2011), PCC = 0.36,
P-value = 0.20 for the FBAwWMC model presented (Beg et al, 2007)),
and ME (PCC = 0.50, P-value = 0.07 for the ME-model in (O’Brien
et al, 2013)). Similarly, in silico prediction of gene essentiality in
glucose M9 minimal medium results in an accuracy of 91.1%
(Supplementary Dataset S11, “Gene Essentiality”). This accuracy is
on par with previous approaches using the metabolic reaction

Molecular Systems Biology ~10: 735 | 2014

network alone (accuracy = 91.2% reported in Orth et al, 2011) and
the ME-model (accuracy = 88.8% reported in O’Brien et al, 2013),
as well as the reported accuracy of 79% on the whole-cell model of
M. genitalium (Karr et al, 2012).

Model enrichment through targeted experimentation

We explored the landscape of biological processes that could be
affected by implementing all genetic perturbations contained in
EcoMAC. From the 1,361 GO terms associated with biological
processes in E. coli, we included GO terms belonging to the first five
levels of the GO-hierarchy, resulting in a set of 686 GO terms, cover-
ing 3,319 E. coli genes (80% of total; Supplementary Fig S23A and
B). Only 23% of these GO terms are affected by the genetic pertur-
bations present in EcoMAC given two coverage constraints (Fig 5A;

© 2014 The Authors
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Figure 5. Model validation.

A Perturbed genes in arrays of EcOMAC grouped by GO terms altered. The 172 links are the transcriptional interactions identified in the experimental TRN. Note that the
36 low-level GO terms are plotted from the 160 GO terms found to be enriched.

B Accumulative GO term coverage under the list of the 35 top gene perturbations, according to gene expression variability under genetic (orange), environmental
(purple), or gene—environment combinatorial (red) perturbations. The 10 gene knockouts that were experimentally measured and their corresponding under-
represented GO terms are highlighted.

C Growth rates of the 10 gene knockouts in environments with and without supplementation (* P < 1072 ** P < 1073 *** p < 1079). The dashed red line depicts the
growth rate for the WT strain in M9 salt, 0.3% glucose media without any other supplements.

D Comparison of the 28 predicted and observed phenotypes.

E Phenotypic predictions for the 28 newly measured phenotypes, grouped into categories based on the perturbation type (low growth rate; genetic and environmental
perturbations; and gene knockouts). Each panel shows the percentage of accurately predicted conditions. Both validated and inferred interactions were used for
training the integrative model (Supplementary Methods, section 7.3 and 7.4). Orange (pink) and green dots depict arrays predicted from Fig 4C and newly measured
phenotypes, respectively. Black dots are measurements for the WT strain in non-supplemented M9 media.

Source data are available online for this figure.

© 2014 The Authors Molecular Systems Biology 10: 735 | 2014



8

Published online: July 1, 2014
Molecular Systems Biology

Supplementary Methods, section 7.1), a remarkably low number
that signifies the limitations of the training set for capturing biologi-
cal processes by any model. In order to determine the minimal set
of gene knockouts that maximizes the GO term coverage and
expected gene expression variability, we devised a greedy algorithm
(Supplementary Methods, section 7.2; Supplementary Fig S23C and D)
that produced a ranked list of gene knockouts that maximize the
likelihood for model enrichment by performing expression profiling
and growth measurements. Including the top 35 candidate genes
improves the number of affected GO terms by a staggering 14.6%,
which is in strong contrast to the 3.3 £ 1.1% that is expected by a
random assignment of 35 genes that are currently not present in the
dataset (Fig 5B).

To further test the ability of the genome-scale model to predict
growth rates under adverse conditions, we isolated 10 single-gene
knockouts from these 35 genes that are part of under-represented
GO biological processes in EcoMAC and for which we had no growth
or expression information (Fig 5C, Supplementary Dataset S7). We
then computationally predicted and experimentally measured the
growth rates of these knockout strains in minimal and supplemented
media (28 different combinatorial phenotypes explored; Fig 5C;
Supplementary Methods 7.4). In 9 out of the 10 cases, supplementa-
tion of the media with the necessary compounds led to significant
increase (P < 107'°, Z-test) in growth (Supplementary Fig S24).
Interestingly, the model captures growth-related defects with 79%
accuracy (P < 10" Fisher’s exact test; Fig 5D) across the 28 pheno-
types related to strains with gene knockouts in transport genes
(methionine and short-chain fatty acids transport, metN; rhamnose
transport, rhaT; cobalt, manganese, and ferrous ions transport,
mntH), biosynthesis-related genes (cobalamin and siroheme biosyn-
thesis, cysG; cysteine biosynthesis, cysH; fatty acid, methionine,
threonine, and homoserine biosynthesis, metL), and metabolic
processes (arginine catabolism, castE; D-ribose catabolic process,
rbsK; galactonate catabolism, dgoA; galactose metabolic process and
carbohydrate phosphorylation, galK). In addition, the model predic-
tions were within the confidence intervals for 75%, 53%, and 58%
of the phenotypes related to genetic perturbations, environmental
perturbations, and gene knockouts, respectively, despite the fact
that these knockouts were not part of the EcoMAC dataset and with
GO terms that are not represented in the compendium (Fig SE).
Enrichment analysis of the differential expression predicted by the
model shows 149 genes were significantly altered (P < 10> Z-test)
and are implicated in signal transduction systems and TRN
(response to external stimulus), and metabolism (primary metabolic
process, carbohydrate and amino acid metabolic and catabolic
process) of E. coli (Supplementary Dataset S8). A detailed analysis
of the pathways implicated and justification for the observed growth
can be found in Supplementary Methods (sections 7.3 and 7.4).

Discussion

One of the most striking realizations that came to light after
constructing the various E. coli compendia was the paucity of our
knowledge even for the most-studied bacterial organism: when
accounting for all gene knockouts, rewirings, or over-expressions,
we have data for 141 genes that cover 23% of GO terms, a surpris-
ingly low percentage of coverage. Given that these experiments
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have been performed in different strains and experimental condi-
tions, there is a clear and present need for the creation of compre-
hensive datasets that aim at the construction of more informative
models. The idea of targeted experimentation for model enrichment
departs from the classical view of experiments as an answer to
hypothesis testing and subsequent model training on seemingly
disparate datasets. Rather, to maximize the impact on the model’s
predictive ability, the experimental focus and type can be selected
based on current model deficiencies by using the proper heuristics,
such as the maximal increase in GO term coverage and gene expres-
sion variability that we used in this work.

The EcoMAC compendium increased considerably both the sensi-
tivity and specificity of the known inference methods. Indeed, train-
ing only three inference methods on EcoMAC yielded results that
were significantly better than those obtained recently by using 35
methods (Marbach et al, 2012), but on a smaller compendium. A
limitation here is the severe bias to negative samples in the ground
truth: while experimentally confirmed interactions are well docu-
mented and categorized, there is no such set for true negatives, that
is interactions that were experimentally tested and found non-exis-
tent. As such, all inference assessments consider all TF-gene combi-
nations that are not denoted as confirmed, to be negative, hence
introducing an artificially high False Positive Rate.

Integration of signal transduction, gene expression, and meta-
bolic levels under one overarching framework led to a significantly
more predictive model that can capture environmental and genetic
perturbations beyond what was possible before (Monk et al, 2013;
O’Brien et al, 2013). There are several extensions over previous
attempts that have made this possible. Having constructed a
phenomenological model that focuses more on the statistical associ-
ations among the various components and less on the biophysical
mechanisms of each individual sub-component, we reduced the
parameter space compared to other biophysical models (Segre et al,
2002; Beg et al, 2007; Lee et al, 2008; Adadi et al, 2012; Karr et al,
2012; Lerman et al, 2012; Thiele et al, 2012), a step that reduces the
amount of over-fitting given the limited availability of experimental
data. Instead of using summary statistics to provide kinetic and flow
bounds to macromolecular synthesis machinery reactions (Lerman
et al, 2012; Thiele et al, 2012), we here rely on a methodological
large-scale analysis of gene expression datasets to capture the
dependencies and predictive associations among gene products.
This allows the model to generate predictions beyond the subset of
gene products related to biosynthesis that have been explicitly
modeled and reported in the past. Computationally, the Expression
Balance Analysis (EBA) technique that we developed is similar to
previous work (Covert et al, 2004; Lerman et al, 2012) in the sense
that it employs constrained optimization, although the actual
constraints and objective functions are different, aiming at training
the model parameters so that they maximize the likelihood of the
data, in a realistic fashion. An important contribution of this work is
the creation of a signal transduction network (EcoST) and its inte-
gration to the transcriptional and metabolic network through
constraint modeling, which enables our model to capture environ-
mental perturbations related to carbon, nitrogen and phosphate
sources, oxygen, acids, metals, and other medium supplements.
Expanding the fitness function to calculate a relative cost for altered
gene expression with respect to wild type allowed our model
to predict a wide range of genetic perturbations that includes

© 2014 The Authors



Published online: July 1, 2014

Javier Carrera et al ~ An integrative, genome-scale E. coli model

transcription factor rewirings to the set of knockout and over-
expression perturbations that past models have focused on.

Aside from its merit as a hypothesis-testing tool for systems
biology, integration of this work with synthetic circuit and genome
redesign platforms (Huynh et al, 2013) is a stepping stone toward
unifying, model-driven designs that transcend multiple layers of
biological function. Further refinement and extension of the
supporting compendia will inarguably provide an important knowl-
edgebase for integrative models that exploit associations between
heterogeneous genotypic and phenotypic characteristics. While
innovative, the current model can be extended to use a mixture of
statistical learning techniques that capture different aspects of the
data structure. This, together with iterative cycles of training,
targeted experimentation and refinement is poised to have a trans-
formative potential on our ability to accurately predict cellular states
and generalize in new environments.

Materials and Methods

A gene expression, signal transduction, and phenomics
compendium for Escherichia coli

By integration of microarray data from GEO, ASAP database, Array-
Express, and individual investigators, we have constructed a gene
expression compendium of 4,189 genes over 2,198 arrays that were
collected from 127 scientific articles (Supplementary Methods,
section 1.1 and 1.2; Supplementary Fig S1). A total of 328 transcrip-
tion factors (TFs) and 1,357 enzymes were identified by using
RegulonDB. From the 2,198 arrays, 90 were considered as “wild-
type” conditions (MG1655 strain, aerobic growth in M9/LB media
with 0.3% glucose) and 332 arrays that had experimental settings
that deviate considerably from these conditions were classified as
“environmental perturbations”. Another 718 arrays correspond to
“genetic perturbation” experiments, where a knockout, over-expres-
sion, or gene rewiring took place (Isalan et al, 2008). The resulting
E. coli Microarray Affymetrix Compendium (EcoMAC) includes data
from 31 strains and over 15 different media with high gene expres-
sion diversity (Supplementary Figs S2 and S3). EcoMAC is supple-
mented by EcoPhe (Supplementary Methods, section 1.4), a
phenomics compendium that has bacterial growth information for
616 of the arrays in EcoMAC.

To identify signal transduction pathways that are responsible for
cellular responses to environmental stimuli, we curated the EcoCyc/
RegulonDB knowledgebase and then curated relevant literature to
identify 151 instances of signal transduction systems (STSs) where
the expression level of one or more TFs is regulated by the presence
of effector molecules. In the resulting database, EcoST, 71 of these
TF-effector interactions fall under one of the following four types of
auto-regulation: (a) Type I (28 instances): the TF represses its own
expression in the absence of an inducer, while derepression occurs
at its presence (e.g., lldR and L-lactate; Supplementary Figs S7B and
S8A), (b) Type II (11 instances): the TF-effector complex regulates
its own expression in the presence of the effector (e.g., fur and iron;
Supplementary Figs S7C and S8B), (c) Type III (4 instances): two
component systems where a histidine kinase sensor is auto-
phosphorylated in the presence of an effector and transfers the
phosphate to a TF that can in turn positively (3 instances) or
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negatively (1 instance) regulate its own expression (e.g., dpiA and
citrates Supplementary Fig S7D), and (d) Type IV (28 instances)
where TF gene expression is altered in the presence of the effector
but the corresponding mechanism is not known (e.g., fhlA and
formate; Supplementary Fig S7E). The rest of the 80 signal-mediated
regulatory interactions were described in literature, but they did not
show a significant change in gene expression levels in presence of
the effectors. Supplementary Dataset S5 contains all the signal trans-
duction systems that we considered.

Gene regulatory network reconstruction

We compiled a list of 3,704 regulatory interactions from RegulonDB
v8.1, 115 of which were auto-regulatory interactions (3.1%)
(Supplementary Dataset S3). Positive interactions are slightly more
represented than negative interactions (1,807 versus 1,664), with
233 interactions being dual in nature. We also created three sets of
data based on the confidence level of the interactions (Supplemen-
tary Methods, section 2.1): a first set with 566 “confirmed” evidence
interactions (existence of two or more types of strong experimental
evidence), a second set that includes all 566 confirmed and another
2,517 “strong” evidence interactions (existence of only one type of
strong evidence) for a total of 3,083 interactions, and the third set
includes all 3,704 interactions, with 711 of them based only on
“weak” evidence (Fig 3C). For evaluation, we used three golden
standards. First, we used the golden standard used in Marbach et al,
2012, which includes interactions with strong evidence from
RegulonDB v6.8. The other two testing sets consist of the interac-
tions that are labeled as strong (one type of strong evidence, 3,083
interactions) and confirmed (two types of strong evidence, 556
interactions) based on RegulonDB v8.1, respectively (Fig 3C).

We evaluated five top-ranked regulatory interaction inference
methods, and we selected three (GENIE3 (Huynh-Thu et al, 2010),
TIGRESS (Haury et al, 2012) and Inferelator (Greenfield et al,
2010)) based on their performance to integrate as a meta-classifier
and train with EcoMAC. By using the same evaluation criteria with
the DREAMS network inference challenge, we compared the perfor-
mance of the meta-classifier trained on EcoMAC to that trained on
the 805-array dataset used in (Marbach et al, 2012). Supplementary
Fig S5 depicts the ROC curves and AUC values for the meta-
classifiers and individual methods for both datasets and for three
different golden standards. The resulting consensus network of the
first 500 inferred interactions achieves a precision of 0.45, with 381
(76.2%) of them overlapping with previous predictions.

Cellular sub-models

Signal transduction model

To model the effect of signal transduction systems (STSs) on gene
expression, we considered the cases where the effector’s presence
alters TF concentration or its structural conformation and function-
ality. In the case where the effector has a direct impact to the TF’s
concentration, we defined a linear constraint to describe the TF
expression yrr as a function of changes in effector concentrations
ANg:

. ATIE
YF = )}yl“vlg + Q(C’Tl"nl?x - C{"nl;n)X”lIZF Apnmax’
E
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where y¥, CRM and CB&™ are the wild-type, minimum and maxi-
mum expression values of the TF gene obtained from EcoMAC.
Ang is the difference in the effector concentration between the
predicted and reference (WT) levels, and Ang® is an empirical
parameter. The parameter y%. is positive (negative) depending on
whether the presence of the effector increases (decreases) the TF
concentration, and parameter Q was used to fine-tune the STSs
(Supplementary Methods, section 3.2). In the second case, we
modeled the change in the TF activity by introducing a binary vari-
able ©§; that was zero or one depending whether the TF was still
functional after the binding event.

Transcriptional model and EBA

We model the mRNA dynamics of all genes in the compendium as
a function of the TF concentration by linear ordinary differential
equations (ODEs). Then, we developed a novel method called
“Expression Balance Analysis” (EBA) to predict the global gene
expression profile of E. coli under genetic modifications and envi-
ronmental changes (Supplementary Methods, section 4). EBA
formulates an optimization problem to find the gene expression
profile subject to four sets of constraints (phenomenological, capac-
ity, environmental, and genetic constraints). Specifically, we used a
fitness function, E, that minimizes the gene expression errors of the
328 TFs (etp):

Minimize:
L =lVrr 7| Yrr
E=— erp |H| 2 +fl2
2 [yre o] |:£TF f ETF
subject to:

s {);TF} = &, phenomenological constraints;
TR

Tror > Cmin
TF — . .
)_] ,TF capacity constraints;
yre < O’
— ~TF

y1¢ = F6(Cain, Cmax, % B, ¥r¥), genetic constraints;

G — (D) (Fmin Fmax Wt ma;
yrr = Fg (C ,C ,)/?F,X}TEF,ATLE X7AT7-E) . .
, environmental constraints;

Vg :Féz) (5(7B7)7TF'%TF)

ol
1l

0 I
a vector of the basal transcription coefficients, and f is a matrix with
elements f; that represent the effect of the 7" TF to the i" gene. The

where = = [[d — f 1d], the hessian matrix H = [ 7} .f=0,ais

maximum (Cpax) and minimum (Cpn) values of gene expression for
each gene were obtained from EcoMAC.

Metabolic model and Transcription-based Flux Enrichment

We created a transcription-based metabolic flux enrichment
(TRAME) method to integrate metabolic and transcriptional regula-
tory networks modifying the Vi, and V. calculated from Flux
Variability Analysis (FVA) for each metabolic flux in the E. coli
metabolic model i1JO1336 (Orth et al, 2011). This approach
determines the new values of the flux bounds V,,;, and V4, for a
given enzyme, e, as a function of the expression (P-function) relative
to the WT enzyme expression (Supplementary Methods, section 5),

n
PViin <V < PVinax, where P = (%) , and n is a parameter that
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allows us to factor in the variability observed on the wild-type
arrays regarding the expression of that specific enzyme, y"'T.

Model integration

Integration of the various cellular and environmental components
to phenotypic changes was performed through a cost-benefit
model. As such, we compute the growth burden due to the produc-
tion and maintenance of all proteins (cost), as well as the growth
advantage due to the energy uptake of the metabolic pathways in
each environment (benefit). Figure 2 and Supplementary Fig S20
depict the information flow among the distinct sub-components in
our framework. In this cost-benefit model, the genetic cost is
defined as the relative reduction in growth rate (u) due to the
production of essential proteins. We used the EBA method to
predict gene expression profiles (y,) under environmental and
genetic perturbations. To measure the cost ¢, we computed the
deviation between the WT ()7;’”) and predicted (yg) gene expres-
sion profiles:

Vg — ){‘gNT

vt

1

c=—
N 4

where Ng is the number of genes in E. coli genome. Similarly, to
compute the metabolic benefit B, we used the metabolic sub-model
(Supplementary Methods, section 6.1). As such, the fitness func-

tion that represents the growth rate f is given by the difference
between the benefit and the cost:

nw=B-c

Environmental perturbations can modify gene expression
through the signal transduction sub-model according to the change
of effector concentrations (Amng). Similarly, genetic perturbations
alter the basal and regulatory coefficients (& ) of the respective
genes in the transcriptional model. Both environmental and
genetic perturbations can directly modify the metabolic fluxes
(Vmin Vmax)-

Experimental model validation

We identified 10 single-gene knockouts from under-represented GO
terms in EcoMAC, and we used the E. coli model to predict their
growth in various environments. Experimental measurements for
those single-knockout strains (Keio collection) determined their
growth in minimal M9 media under various conditions (with/with-
out supplement carbon sources related to the specific knockout defi-
ciency, and with/without 0.3% glucose; Supplementary Methods,
section 7.3). We compared computational predictions to observed
growth rates under those 28 phenotypes measured. In addition, we
compared predicted and observed growth rates for all the environ-
mental and genetic perturbations included in EcoPhe (Supplemen-
tary Methods, section 6.2).

Supplementary information for this article is available online:
http://msb.embopress.org
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