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Individual cells from a genetically identical population exhibit substantial variation in gene expression. A significant part of
this variation is due to noise in the process of transcription that is intrinsic to each gene, and is determined by factors such as
the rate with which the promoter transitions between transcriptionally active and inactive states, and the number of
transcripts produced during the active state. However, we have a limited understanding of how the DNA sequence affects
such promoter dynamics. Here, we used single-cell time-lapse microscopy to compare the effect on transcriptional dynamics
of two distinct types of sequence changes in the promoter that can each increase the mean expression of a cell population by
similar amounts but through different mechanisms. We show that increasing expression by strengthening a transcription
factor binding site results in slower promoter dynamics and higher noise as compared with increasing expression by adding
nucleosome-disfavoring sequences. Our results suggest that when achieving the same mean expression, the strategy of using
stronger binding sites results in a larger number of transcripts produced from the active state, whereas the strategy of adding
nucleosome-disfavoring sequences results in a higher frequency of promoter transitions between active and inactive states. In
the latter strategy, this increased sampling of the active state likely reduces the expression variability of the cell population.
Our study thus demonstrates the effect of cis-regulatory elements on expression variability and points to concrete types of
sequence changes that may allow partial decoupling of expression level and noise.

[Supplemental material is available for this article.]

Fluctuations in the process of transcription can generate consid-

erable cell-to-cell variability in the expression level of genes across

isogenic cell populations (Blake et al. 2003; Kaern et al. 2005;

Maheshri and O’Shea 2007; Raj and van Oudenaarden 2009). This

variability can result in phenotypic diversity and thus lead to po-

tentially important effects on many cellular and developmental

processes. Consequently, unraveling the sources that underlie ex-

pression variability has been a topic of considerable interest. Sev-

eral studies demonstrated that genes are transcribed in bursts (Ross

et al. 1994; Blake et al. 2003; Golding et al. 2005; Larson et al. 2011;

Suter et al. 2011), such that the expression variability due to tran-

scription is determined by the frequency with which the bursts

occur (burst frequency) and the number of transcripts produced per

burst (burst size) (Cai et al. 2006). These parameters are determined

in part by fluctuations in trans factors that are extrinsic to the pro-

moter, such as the concentrations of the regulating transcription

factors and RNA polymerases (Elowitz et al. 2002; Kaern et al. 2005).

The remaining variability is gene-specific intrinsic noise that was

shown to vary greatly across promoters (Raser and O’Shea 2004;

Bar-Even et al. 2006), and which is at least partly encoded by cis-

acting regulatory elements embedded within the DNA sequence

of each promoter (Raser and O’Shea 2004; Blake et al. 2006).

Several types of regulatory elements were shown to affect

transcriptional noise. Mutating a TATA-box in two yeast promoters

reduces expression variability, in a manner that is consistent with

an effect of TATA-boxes on the size of transcriptional bursts (Raser

and O’Shea 2004; Blake et al. 2006; Hornung et al. 2012). The

number and affinity of transcription factor binding sites were also

shown to affect expression variability (Murphy et al. 2007; To and

Maheshri 2010; Suter et al. 2011), with one study demonstrating

that using two sites for the mammalian transcription factor NF-Y

instead of one, or using a higher affinity NF-Y site, increased ex-

pression variability in an artificial promoter construct (Suter et al.

2011). Similar to the effect of TATA-boxes, the increase in ex-

pression variability observed with two NF-Y sites or with a higher-

affinity site was mediated primarily by an increase in the average

burst size, whereas the burst frequency was largely unaffected

(Suter et al. 2011). Chromatin regulation has also been linked to

expression variability (Blake et al. 2003; Raser and O’Shea 2004;

Field et al. 2008; Choi and Kim 2009; Bai et al. 2010), with two

studies showing that adding nucleosome-disfavoring sequences

to a yeast promoter resulted in lower nucleosome occupancy and

reduced expression variability (Bai et al. 2010; Raveh-Sadka et al.

2012). However, in contrast to the effect of TATA-boxes and TF

sites, chromatin was suggested to mainly affect the frequency

with which promoters transition between transcriptionally active

and inactive states (Raser and O’Shea 2004). In yeast, statistically

significant genome-wide associations were found between higher-

expression variability and the presence of TATA-boxes, the number

of TF binding sites, and the encoding of high nucleosome occu-

pancy (Field et al. 2008; Tirosh et al. 2008).

A recent study showed that the quantitative increase in the

mean expression over a cell population that results from adding

nucleosome disfavoring sequences can be comparable to the in-

crease in expression achieved when increasing the affinity of
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a transcription factor (TF) binding site (Raveh-Sadka et al. 2012).

Several lines of evidence suggested that the effect of the nucleosome-

disfavoring sequences was likely mediated by the lower nucleosome

occupancy and thus increased accessibility that nucleosome-

disfavoring sequences confer over the nearby promoter elements,

such as TF sites (Raveh-Sadka et al. 2012). Thus, combined with the

above studies, an intriguing hypothesis is that the two distinct types

of sequence changes in either TF sites or in nucleosome-disfavoring

sequences provide a genetic mechanism that may allow partial

decoupling of mean expression level and transcriptional noise.

Specifically, since mean expression is the product of burst frequency

and burst size, and noise (under some assumptions) is the inverse

of burst frequency (Paulsson and Ehrenberg 2000; Friedman et al.

2006), then increasing burst frequency is expected to result in lower

noise compared with a similar increase in mean expression that is

due to an increase in burst size.

Here, we set out to test the above hypothesis, as well as to di-

rectly compare the effects that changes to transcription factor

binding sites have on expression variability with the effects induced

by changes to sequences that affect nucleosome occupancy. To as-

sociate the observed changes in expression variability with one of

these types of sequence changes, we always performed the two types

of sequence changes being compared within the same promoter

context. By monitoring fluorescent intensity in single cells using

time-lapse microscopy, we compared the dynamics of promoters in

which expression is increased by adding or lengthening nucleo-

some-disfavoring sequences with the dynamics induced by changes

to the binding affinity of sites for two different transcription factors.

Our results demonstrate that these two distinct DNA-encoded

strategies for increasing expression indeed have opposing effects on

promoter dynamics, allowing the same mean expression level to be

achieved but with lower noise when the strategy of nucleosome-

disfavoring sequences is used. These results hold for the two different

transcription factors that we tested and are further supported by

independent flow cytometry measurements that we performed.

Thus, our results show how mean expression and expression

variability may be partially decoupled, providing a potentially

useful tool for synthetic biology, and raising intriguing hypotheses

regarding the extent to which evolution of native promoters has

used these genetic mechanisms to partly decouple mean expres-

sion and noise levels.

Results

Experimental design and measurement of promoter dynamics

We sought to compare the effect on promoter dynamics of two

distinct strategies for increasing expression, strengthening tran-

scription factor binding sites, and adding or lengthening nucleo-

some-disfavoring sequences, since we hypothesized that each type

of sequence change would affect different aspects of promoter

dynamics. Specifically, in the classical scenario in which the

binding of a transcription factor induces expression via its stabi-

lizing effect on polymerase, we expect that strengthening the af-

finity of a TF site may increase the time that the factor remains

bound at its site, resulting in more transcripts produced during the

active state, and thus increasing expression by increasing the burst

size (Fig. 1A, bottom). In contrast, since addition of poly(dA:dT)

tracts, which disfavor nucleosome formation (Segal and Widom

2009), was shown to result in lower nucleosome occupancy and

more accessible DNA in the vicinity of the tract (Iyer and Struhl

1995; Raveh-Sadka et al. 2012), we hypothesized that this would

result in faster on/off binding dynamics of a TF to a nearby site, and

thus increase expression by increasing the burst frequency (Fig. 1A,

middle). Thus, we predicted that the strategy of increasing ex-

pression by lowering the encoded nucleosome occupancy of a TF

binding site would result in faster promoter dynamics and thus

lower expression variability across a cell population, as compared

with the strategy of increasing expression by strengthening the TF

binding site.

To test this hypothesis, we used a controlled setting in which

only the elements hypothesized to have differential effects on

promoter dynamics are altered. To this end, we used yeast strains in

which different promoters are separately integrated into the same

genomic location and upstream of the same yellow fluorescent

protein (YFP) reporter (Zeevi et al. 2011). To control for experi-

mental variability and as a marker for segmenting and tracking the

cells in all promoter variants, an mCherry fluorescent reporter is

also integrated into the same genomic location in all strains,

downstream from a constant promoter (TEF2, a translation elon-

gation factor). We used a set of synthetic variants that were gen-

erated in a recent study, in which poly(dA:dT) tracts with different

lengths and binding sites with different affinities for two distinct

transcription factors were integrated into the same promoter

context (Fig. 1B; Raveh-Sadka et al. 2012). The promoter context is

derived from the native yeast HIS3 promoter, and contains two

poly(dA:dT) tracts flanking a single site for the transcriptional ac-

tivator Gcn4. Measurements of mean expression levels of these

promoter variants showed that variants with longer poly(dA:dT)

tracts exhibit higher YFP expression. Consistent with an effect

mediated by changes in nucleosome organization, variants with

longer poly(dA:dT) had lower nucleosome occupancy over the

nearby transcription factor binding site (Raveh-Sadka et al. 2012).

Important for our purposes, this recent study showed that these

two distinct strategies of increasing expression, once by modu-

lating binding site affinity and once by modulating poly(dA:dT)

length, can achieve comparable quantitative increases in the mean

expression level of the cell population.

To test our hypothesis that these distinct genetic strategies for

increasing expression have opposing effects on promoter dynam-

ics, we used two independent approaches that can each provide

estimates of promoter dynamics (Fig. 1C,D). The first monitors YFP

fluorescence in single cells over time and thus provides more di-

rect measurements of promoter dynamics. To this end, we grew

cells in a microfluidic plate that maintains continuous supply

of media, and used an automated microscopy system to image

fluorescence continuously over 15 h and at a resolution of 3 min

(Fig. 2A; Supplemental Fig. S6). We developed analysis software

that uses the mCherry fluorescence signal to segment the cells and

track the segmented cells over time, resulting in time traces of

mCherry and YFP signal intensities (Fig. 2A,B; Supplemental

Methods). We followed each cell over multiple cell doublings,

which was identified by the marked decrease in the fluorescence

signal that is caused by diffusion of the fluorescent reporter into

the daughter cell (Fig. 2B; Supplemental Methods). For each cell,

we then computed the rates of its mCherry and YFP production

over time, by differentiating the dilution-corrected signal tracks

(Fig. 2B; Supplemental Methods). To compare promoter dynamics

across different strains, we normalized the YFP signal by the

mCherry signal (Fig. 2B), because this accounts for many ex-

trinsic factors that are correlated with the measured protein

production rates, such as variations in cell size, time within cell

cycle, and abundance of general components of the transcriptional

machinery (Supplemental Methods). As a second independent
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method from which indirect estimates of promoter dynamics can

be extracted (Friedman et al. 2006), we used flow cytometry to

measure the distribution of single-cell fluorescent intensity at a

single time point (Fig. 1D). Notably, in both measurement methods,

the mean expression of the cell population increases with both the

length of the poly(dA:dT) tract and the affinity of the transcription

Figure 1. (Legend on next page)
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factor binding sites, consistent with previous measurements (Sup-

plemental Fig. S1; Raveh-Sadka et al. 2012).

Lengthening poly(dA:dT) tracts and strengthening
transcription factor binding sites have opposing effects
on the rate of promoter dynamics

As a direct and unbiased approach to compare dynamics of pro-

moter activity across our various promoter variants, we first com-

puted the autocorrelation function of the YFP production rates as

measured by time-lapse microscopy of every variant (Sigal et al.

2006). Higher correlations indicate production rates that are main-

tained across longer time periods and thus suggest slower changes

in dynamics of promoter activity. To perform the analysis, we ex-

tracted the time traces of YFP production of thousands of individual

cells from each promoter variant, computed the autocorrelation of

each time trace at different time lags in 6-min resolution, and, for

every time lag, averaged the autocorrelation values of the cells of

each variant.

Comparing the autocorrelations of five different variants with

poly(dA:dT) tracts of length 0, 5, 12, 17, and 22 bp, we found

significant gradual reductions in the autocorrelation of the vari-

ants as the length of the tract increases (Fig. 2C). In contrast, we

found an opposite trend of an increase in the autocorrelation

values of three different promoter variants in which the affinity of

the binding site for Gcn4 is strengthened (Fig. 2D). In both cases,

the differences between variants were significant across several lags

(Student’s t-test, P < 0.05), and the most significant lags correspond

to lags that are <20 min and thus much shorter than the average

cell cycle time (;90 min).

To verify that these effects are not specific to the tested

variants and to Gcn4, we repeated the analysis in three addi-

tional sets of variants consisting of a set of five variants in which

the above poly(dA:dT) tracts were added to a different promoter

background; a set of three variants with increasing binding site

affinities for the transcriptional activator Gal4, which is not

known to regulate the native promoter from which our variants

were derived; and another set of the same three Gal4 sites added

to a modified promoter background. Consistent with our above

results, we found that variants with longer poly(dA:dT) tracts

within the modified Gcn4 promoter background had lower auto-

correlation values than shorter tracts (Fig. 2E), and variants with

higher-affinity Gal4 sites in both promoter backgrounds had higher

autocorrelations than lower-affinity sites (Fig. 2F; Supplemental

Fig. S2). Moreover, comparing the two sets of Gal4 site variants

between the two promoter backgrounds that differ in the pres-

ence of a poly(dA:dT) tract, we found that the variants within the

poly(dA:dT)-containing promoter background had lower auto-

correlation values, providing further support to the reduced au-

tocorrelation that occurs upon addition of poly(dA:dT) tracts.

Our results suggest that these two distinct strategies for in-

creasing expression, namely, lengthening poly(dA:dT) tracts or

strengthening binding site affinity, do so with opposing effects on

the time-dependent dynamics of promoter activity.

Longer poly(dA:dT) tracts induce faster promoter transition
rates

To obtain a more direct visual view of the above results at the

single-cell level, we used our data to estimate the frequency with

which each of the above promoter variants transitions between

high-expressing and low-expressing states. To this end, we defined

the high- and low-expressing states by whether the amount of YFP

produced during the examined time window was above or below

some arbitrary threshold, respectively. We again used the time

traces of YFP production of thousands of individual cells from each

promoter variant, and for a given YFP production threshold, clas-

sified every 3-min time window of each cell’s YFP time trace into

high- and low-expressing states (Fig. 3A). From these classifica-

tions, we then computed, for each promoter variant, its proba-

bility of transitioning between high- and low-expressing states,

as well as the fraction of all of its cell cycle time traces that had

k transitions, for all possible values of k. Thus, this analysis ex-

amines how the high- and low-expressing time windows are

distributed across the time traces of each variant. For example,

a fast-transitioning variant in which 50% of its time windows are

high expressing would transition between high- and low-expressing

states every 3 min, whereas an extremely slow variant would be

continuously high expressing in half of all of the cell cycles exam-

ined and continuously low expressing in the other half. To ensure

that the results are not sensitive to the choice of threshold, we

performed the analysis across a wide range of threshold values.

Notably, we found that variants with longer poly(dA:dT)

tracts had higher probabilities of transitioning between high- and

low-expressing states and a higher fraction of cell cycles with more

than five transitions (Fig. 3B,D). Conversely, variants with higher-

affinity binding sites had lower transition probabilities and a higher

fraction of cell cycles with at most one transition between high- and

Figure 1. Promoter variants and experimental setup. (A) Illustration of hypothesized promoter dynamics induced by two distinct DNA-encoded
strategies for increasing expression and a matched stochastic simulation of promoter switching, transcription, and translation (right panel) for each
strategy. For a simplified model in which promoters transition at some rate between transcriptionally inactive and active states (top), we hypothesize that
addition of nucleosome disfavoring elements such as poly(dA:dT) tracts would increase the accessibility of the transcription factor binding site, thereby
reducing the time that a factor molecule spends in search of its site (middle). In contrast, we hypothesize that increasing the affinity of a factor binding site
would reduce the factor’s dissociation rate. Note that both types of sequence changes result in a higher mean expression over the cell population, but with
distinct hypothesized effects on promoter dynamics. Using the Gillespie algorithm, we simulate the kinetic scheme in three scenarios. In the simulation
runs, we record, as a function of time, the promoter state (black–red line), mRNA levels (blue line), protein levels (black line), and the protein production
rate (green line), which is the derivative of the protein levels with respect to time. In addition, we record protein production bursts (red line), when
production is positive. The ‘‘normal’’ promoter (top) represents the reference point for the parameter changes. The fast promoter (middle) has an increased
kon to simulate an increase in promoter accessibility [added poly(dA:dT)]. The ‘‘slow’’ promoter (bottom) has a decreased koff (with respect to the normal
promoter) to simulate an increase in TF binding site affinity. The three example runs shown illustrate that although both parameters can increase the
overall expression level, kon increases the frequency of production bursts, while koff increases the length of the bursts. (B) Illustration of promoter variants
used in this study. All promoters are genomically integrated upstream of a yellow fluorescent protein (YFP) reporter and into a region that also contains an
mCherry fluorescent protein driven by a constant TEF2 promoter. Promoter variants differ in the presence and length of two poly(dA:dT) tracts and in the
affinity of the transcription factor binding site for either the Gcn4 or Gal4 transcriptional activators. (C ) Representative YFP time-lapse microscopy images
of four promoter variants, imaged in a microfluidic platform that supplies a continuous flow of medium. Each cell was followed over time, and its lineage,
YFP, and mCherry signal intensity were extracted (Methods). (D) Single-cell flow cytometry data collected for the corresponding promoter variants from C,
shown as a histogram of normalized YFP values (top) and as a scatterplot of YFP (x-axis) against mCherry fluorescence (bottom).
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Figure 2. Opposing effects on promoter dynamics for lengthening poly(dA:dT) tracts and strengthening transcription factor binding sites. (A) Rep-
resentative time-lapse microscopy images of one imaging area at five different time points, displaying YFP fluorescence (top), mCherry fluorescence
(middle), and automatically segmented cells. (B) Representative time-lapse traces of YFP and mCherry fluorescence of a single cell over time (top), along
with YFP and mCherry production rates (middle), and normalized YFP production rates (bottom; normalization done by mCherry; see Methods). Blue
circles denote cell cycles. (C ) Longer poly(dA:dT) tracts result in faster promoter dynamics. Shown is the average autocorrelation of normalized YFP
production rates across thousands of different cell traces for each of five different promoter variants with poly(dA:dT) tracts of length 0, 5, 12, 17, or 22 bp.
Bars denote standard error. (D) Higher-affinity binding sites result in lower promoter dynamics. Same as C, for three promoter variants that differ only in the
affinity of the Gcn4 site. (E ) Same as C, but where the poly(dA:dT) tract variants were inserted into a different genetic background in which the right
poly(dA:dT) tract is deleted (R0). (F ) Same as D, but for three Gal4 sites that differ in their affinity.
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Figure 3. Lengthening poly(dA:dT) tracts and strengthening transcription factor binding sites have opposing effects on the rate of promoter transitions
between active and inactive states. (A) Illustration of our analysis of promoter transition rates. For each cell cycle of every cell, we classify its trace of
normalized YFP production rate (blue trace illustrated here for one cell cycle of one cell) into active (red) and inactive (green) states according to whether
they are above or below a predefined arbitrary threshold (red horizontal line), respectively. (B) Increasing the length of a poly(dA:dT) tract results in
a higher rate of transitions between active and inactive states. For promoter variants that differ in the length of a poly(dA:dT) tract, shown is the fraction of
all of its measured cell cycle traces in which the number of transitions between active and inactive states was at most two (slow transitions; left bar graph) or
at least five (fast transitions; right bar graph). The comparison of these different promoter variants was done at a threshold in which the fraction of all
inactive states in each variant was 70% (since absolute expression levels vary across variants, the absolute threshold value is different for each variant). See
Supplemental Figure S4 for similar analyses at a range of thresholds from 50% to 90%. (C ) Increasing the affinity of a transcription factor binding site
results in a lower rate of transitions between active and inactive states. Same as B, but for variants that differ in the affinity of a Gcn4 binding site. (D) Visual
illustration of cell cycle traces corresponding to the bar graphs from B in which the length of poly(dA:dT) tracts was varied. For each promoter variant,
shown are 200 rows that each correspond to a time trace of one cell cycle of one cell with colored entries representing active (red) or inactive (green) states
at a threshold in which 70% of all states were inactive. Rows are sorted according to the number of transitions between active and inactive states, and the
200 rows were sampled from all cell cycle traces such that they accurately represent the same probability distribution of the number of transitions across all
cell cycle traces. (E ) Same as D, but for the bar graphs from C in which the affinity of Gcn4 sites was altered.
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low-expressing states (Fig. 3C,E; Supplemental Fig. S3). These results

were robust across all tested threshold choices (Supplemental

Fig. S4). Thus, although our data do not directly measure high- and

low-expressing states, they clearly demonstrate that across the

broad range of threshold choices for the high-expressing states,

increasing the length of poly(dA:dT) tracts results in faster tran-

sitions between the classified states, whereas increasing the af-

finity of a transcription factor binding site results in slower transi-

tions. This suggests that these two distinct strategies for increasing

the mean expression level of a cell population are mediated by op-

posing effects on promoter dynamics, consistent with the above

autocorrelation analysis.

Agreement between time-lapse promoter dynamics and static
expression measurements

As another experimentally independent way to estimate promoter

dynamics, we also measured the single-cell YFP and mCherry fluo-

rescence intensity distributions of each promoter variant at a single

time point of mid-log phase using flow cytometry. Under certain

assumptions, previous studies have shown that by fitting the static

distribution of such single cell fluorescence intensities to a gamma

distribution, the two fitted parameters can be interpreted as the burst

frequency with which genes are transcribed and the size of the bursts

(Friedman et al. 2006; Taniguchi et al. 2010). To remove much of the

extrinsic noise that is due to variations such as cell size, we normalized

the YFP intensity of each cell by the measured mCherry intensity to

get a pathway-specific measure of noise. Although this measure does

not fully correspond to intrinsic noise in our experimental system, the

distributions of normalized YFP fluorescent intensities were well fitted

to a gamma distribution, thus supporting the use of this framework

for estimating promoter dynamics (Supplemental Fig. S5).

Examining the fitted parameters of the gamma distribution

for each promoter variant, we found that increasing the affinity of

the transcription factor binding site resulted in higher values for

the inferred burst size parameter, and in little effect on the inferred

burst frequency parameter (Fig. 4A,B). We found this behavior in

four different sets of variants that correspond to changes in the

affinity of sites for both Gcn4 and Gal4, each in two different

promoter backgrounds. In contrast, we found that increasing the

length of a poly(dA:dT) tract resulted in higher values for the burst

frequency parameter, and in little change in the burst size pa-

rameter (Fig. 4C). Here, too, we found similar behavior across

two different promoter backgrounds in which the length of the

poly(dA:dT) tract was increased. Thus, these results, obtained by an

independent experimental system that measures the population-

level distribution of fluorescent intensities, suggest that longer

poly(dA:dT) tracts increase expression primarily by inducing a

higher frequency of promoter transitions to the active state,

whereas higher-affinity binding sites do so primarily by increasing

the size of the bursts from the active state. These results are in accord

with the more direct measurements of promoter dynamics that we

obtained using time-lapse microscopy.

Achieving similar mean expression levels with predictably
different noise levels

Finally, analytical models predict that when two promoters achieve

the same mean expression level but with different burst frequency

and burst size, then the promoter with the higher burst frequency

will exhibit less noise, defined as the standard deviation of the ex-

pression across single cells divided by the mean expression level of

the population (Elowitz et al. 2002). We used our promoter variants

to test this intriguing prediction, since according to our above

estimates of promoter dynamics, our variants represent a case in

which the same increase in mean expression can be achieved

through different effects on burst frequency and burst size. To this

end, we examined promoter triplets that each consist of three pro-

moter variants in which promoters are modified by either adding/

lengthening a poly(dA:dT) tract or strengthening a transcription

factor binding site such that these modifications increase the mean

expression level to similar levels. For each variant in every set, we

then used our above flow cytometry measurements to compute its

noise level. In all cases, the promoter in which a poly(dA:dT) tract

was added had lower noise than the promoter in which the similar

expression level was reached by increasing the binding site strength.

This result is consistent with the prediction we set out to test, if,

indeed, the same mean expression levels were achieved with the

poly(dA:dT)-containing promoter exhibiting a higher burst fre-

quency (Fig. 5A). Notably, these sets included sites for both Gcn4

and Gal4, suggesting that the results may hold generally for more

transcription factors.

We next examined two additional sets that also consist of three

promoter variants each in which starting from a promoter with

a poly(dA:dT) tract and a high-affinity transcription factor binding

site, deleting the poly(dA:dT) tract, or lowering the site affinity re-

duced expression to similar mean levels. In both sets, the promoter

in which the poly(dA:dT) was deleted had higher noise, which is

again consistent with the original prediction, if, indeed, the pro-

moter without the tract achieved the same mean expression with

a lower burst frequency (Fig. 5B). Here too, the two sets represent

sites for two different transcription factors (Gcn4 and Gal4).

Taken together, our results suggest that we can achieve similar

quantitative effects on the mean expression of a cell population by

either adding poly(dA:dT) tracts or strengthening the affinity of

a transcription factor binding site, but the promoter with the

poly(dA:dT) will have a higher burst frequency, lower burst size,

and, as predicted by analytical models (Paulsson and Ehrenberg

2000; Kepler and Elston 2001; Raser and O’Shea 2004; Friedman

et al. 2006), lower noise, as compared with the promoter with the

stronger site. Since the effects of these manipulations are predict-

able, these two distinct strategies may allow for partially decou-

pling mean expression level and noise.

Discussion
Understanding the dynamical process by which promoters transi-

tion between active and inactive states is central to an understanding

of transcriptional regulation. Here, we focused on the role of pro-

moter DNA sequence in this process and compared the effect on

single-cell expression of two different DNA-encoded strategies that

are capable of increasing the mean expression level of a cell pop-

ulation by similar magnitudes. Compared with strengthening

transcription factor binding sites, we found that increasing ex-

pression by adding nucleosome-disfavoring sequences results in

faster promoter dynamics and lower expression variability across an

isogenic cell population, suggesting that mean expression level and

transcriptional noise can be partially decoupled. Notably, these re-

sults held in several different contexts and for two distinct tran-

scription factors. Previous studies showed that gene expression and

noise can be decoupled by mutating the TATA-box (Murphy et al.

2010) or by introducing negative autoregulation (Nevozhay et al.

2009). Our work suggests that such decoupling can also be achieved

through chromatin.
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Although our experimental system does not directly measure

the frequency with which promoters transition between active and

inactive states or the number of transcripts produced from each

transcriptional burst, both our time-lapse microscopy and flow

cytometry measurements suggest that the expression increase of

each of the two types of sequence changes that we tested is

mediated by distinct mechanisms. In the case of adding poly(dA:dT)

tracts, our results suggest that the increase in expression is primarily

achieved by a higher frequency of transitions between the inactive

and active states. We propose that the lower nucleosome occupancy

Figure 4. Flow cytometry validation of opposing effects of lengthening poly(dA:dT) tracts and strengthening transcription factor binding sites. (A)
Strengthening the affinity of a transcription factor binding site mainly affects burst size. For two different sets of promoter variants, each with three different
binding site affinities for Gcn4, shown are the values of the two parameters from the Gamma function when fitted to the normalized YFP intensities of each
promoter variant measured over the cell population at a single time point using a flow cytometer. Under certain assumptions (Friedman et al. 2006;
Taniguchi et al. 2010), these two parameters correspond to the burst frequency (left graph) and burst size (right graph). Note the larger variation in burst
size across these variants. (B) Same as A, for variants in which the affinities of Gal4 binding sites were varied. (C ) Lengthening a poly(dA:dT) tract mainly
affects burst frequency. Same as A, for variants in which the length of a poly(dA:dT) tract was varied. In contrast to A and B, note the larger variation in burst
frequency across these variants. [R0, right poly(dA:dT) deleted; L0, left poly(dA:dT) deleted.]
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induced by the poly(dA:dT) tracts (Raveh-Sadka et al. 2012) in-

creases the accessibility of the nearby promoter region, thereby re-

ducing the time that it takes the cognate transcription factor to find

the site and leading to a higher frequency of successful binding

events and promoter activation. This suggestion is supported by

a study showing that promoter firing rate is dictated by the time

required for a transcription factor to find its gene within the nucleus

(Larson et al. 2011). In contrast, when strengthening a transcription

factor binding site, our results suggest that the increase in expres-

sion is primarily achieved by an increase in the average number of

transcripts produced during the active state. We propose that a

stronger binding site reduces the dissociation rate between the

binding site and its cognate factor, resulting in more stable binding

of the transcriptional machinery and thus a higher probability of

transcription reinitiation and longer and more sustained bursts,

similar to the effects suggested for promoter TATA-boxes. This sug-

gestion is supported by recent findings that measured bursting ki-

netics in mammalian genes and found increased mean burst sizes

for artificial promoters designed with a higher-affinity binding site

for a transcriptional activator (Suter et al. 2011).

Finally, comparing the expression of five pairs of promoters

in which the promoters in each pair have similar expression

levels, we found that in every pair, the promoter with the longer

poly(dA:dT) tract and lower-affinity transcription factor binding

site always had lower noise. Since noise is the inverse of burst

frequency (allowing for some assumptions) (Friedman et al. 2006;

Taniguchi et al. 2010), and mean expression is the product of

burst frequency and burst size, these results are also consistent

with longer poly(dA:dT) tracts causing a higher burst frequency.

We note that our experimental system provides a measure of path-

way-specific noise rather than intrinsic noise. However, stringent

filtering gives us a measure that correlates well with intrinsic noise.

Our results are consistent with a model in which the promoter

elements affect promoter state switching (see the Supplemental

Methods). Although we cannot rule out that other mechanisms

may affect the observed transcription rates, our results suggest

that the frequency and length of transcriptional activity change

more than the magnitude of the activity itself (Supplemental Figs.

S21, S22).

Taken together, our results suggest genetic mechanisms by

which partial decoupling of mean expression and noise can be

achieved. It will be interesting to test the effect of other types of

sequence changes on promoter dynamics and to identify cases in

which these signals may have been used in evolution for achieving

biologically important single-cell behaviors.

Methods

Yeast strains
The set of promoters analyzed consists of 22 promoters that were
each genomically integrated into a shared master strain upstream
of the yellow fluorescence protein (YFP) reporter and the HIS3
proximal promoter (100 bp upstream of the ATG). The integrated
region also contains a fixed control promoter for the TEF2 gene
(a translation elongation factor) upstream of an mCherry fluores-
cent protein. The mCherry reporter serves as an internal control for
normalization and cell segmentation. Promoter variants consist of
different binding sites for the Gcn4 and Gal4 transcriptional acti-
vators and different lengths of poly(dA:dT) tracts upstream of the
factor binding sites. Variants of the Gcn4 binding site are as de-
scribed (Raveh-Sadka et al. 2012). Variants of the Gal4 binding sites
were designed to span a range of weak medium and strong affinity
as follows (strong site, CGGAAGACTCTCCTCCG; medium, AGG
AAGACTCTCCTCCG taken from the GAL1–GAL10 UASg site 3;
and weak, CGGATTAGAAGCCGCCG, taken from the GAL1–GAL10
UASg site 1). Full details regarding the strains and the fluorescent
proteins are available in the Supplemental Material.

Growth conditions

Yeast strains were grown at 30°C in synthetic complete medium
supplemented with 2% glucose, in a 96-well plate for 48 h to

Figure 5. Adding poly(dA:dT) tracts and strengthening transcription
factor binding sites have opposing effects on transcriptional noise. (A)
Adding a poly(dA:dT) tract results in a similar increase in mean expression
level but in lower noise compared with strengthening the affinity of a
transcription factor binding site. For three sets of promoter variants (three
different graphs), shown are the median YFP expression (x-axis) and ex-
pression noise (standard deviation of expression divided by the mean
expression) of a starting promoter (leftmost promoter in each graph with
lowest median YFP expression) and two promoters representing modifi-
cations to the starting promoter, in which either a poly(dA:dT) tract was
added (bottom right promoter in each plot) or the binding site was
strengthened (top right promoter in each plot). Note that both promoter
modifications result in similar mean expression levels, but the promoter in
which the poly(dA:dT) tract was added always has lower noise. Bars de-
note standard error. (B) Same as A, but where the starting promoter
contained a poly(dA:dT) tract and a strong transcription factor binding
site, and the modifications either deleted the poly(dA:dT) tract (top left
promoter in each plot) or weakened the binding site (bottom left promoter
in each plot). As in A, both promoter modifications result in similar mean
expression levels, but the promoter with the poly(dA:dT) tract always has
lower noise.
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saturation. For fluorescence microscopy of single cells, cells were
diluted to reach an optical density of 1 prior to the experiment in the
desired medium and then diluted and loaded into the microfluidic
imaging plate (The ONIX Microfluidic Perfusion System, CellASIC
Corporation). Cells were loaded into a 4-mm trap region that ensures
monolayer growth of the cells for optimal maintenance of focal
plane. A constant flow of media was kept, by applying a stable
pressure of 1 psi that enabled constant flow at a rate of 2.5 mL/h.
For the flow cytometry measurements, cells were grown to sat-
uration and then diluted to reach mid-log phase (optical density
of ;0.2) in the specified conditions.

Time-lapse microscopy

Time-lapse experiments were conducted using a commercial fully
automated inverted fluorescence microscope (Nikon TiE) equipped
with a motorized stage (TI-S-ER, Nikon), hardware-based focus
maintenance system (PFS; Nikon), fast external shutters (SUTTER),
603 objective lens, and a cage incubator. Commercial filter sets
were optimized for detection of YFP and mCherry (YFP ex500/20
em535/30 mCherry ex572/35 em632/60, Chroma). High-resolution
images (effective pixel size of 0.216 mm) were acquired for 15 h at
a resolution of 3 min using a cooled charge-coupled device camera
(EMCCD; DU-888E Andor). Approximately 3000 cell traces were
obtained for each imaging area.

Flow cytometry

Flow cytometry experiments were conducted using the Becton-
Dickinson LSRII machine and standard protocols. Four channels
were acquired: forward-scatter, side-scatter, YFP and mCherry (ex-
citation wavelength was 350 nm for YFP and 740 nm for mCherry).
About 150,000 cells were collected from each well at a flow rate of
1 mL/sec. To reduce cell variability, cells were gated in the forward-
scatter and side-scatter channels. Analysis of the flow cytometry
data is described in the Supplemental Material.

Image analysis

Automated image analysis and cell tracking was performed using
a modified version of CellProfiler (Carpenter et al. 2006) and
MATLAB to analyze and process single-cell data. We devised an
automated and robust framework to analyze and filter the cell data
tracks, leaving only high-quality cell data tracks. The framework
included six modules that deal with image corrections, cell seg-
mentation and tracking of the cells, segmentation and tracking
post-processing, cell lineage analysis, data masking and filtering,
correction for cell cycle dilution that stems from diffusion from the
mother to the daughter cell, and calculation of production rates.
The full description of all modules for image analysis is available in
the Supplemental Material. The algorithm for calculating the cell
lineage is also described in full in the Supplemental Material. In
brief, the basic idea of the algorithm is to compute scores for each
of the possible parents and then assign the best scoring parent for
each of the buds, based on several parameters obtained from the
florescent time-lapse data.

Data analysis

We normalized the data according to the mCherry distribution to
account for changes across different well and experiments. Auto-
correlation of promoter production rates was calculated for each
cell, and then all autocorrelations across all cells were averaged for
each resolution (see the Supplemental Material).

Analytical model and stochastic simulations

To analyze the temporal dynamics of gene expression, we used
a stochastic simulation of a two-state kinetic scheme in which the
promoter switches between an active and inactive promoter state,
and has transcription, translation, mRNA degradation and protein
degradation. The equations and rates used in the model, as well as
a full description of all simulations we performed to support our
data are specified in the Supplemental Material.
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