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SUMMARY

Quantitativeviewsofcellular functions requireprecise
measures of rates of biomolecule production, espe-
cially proteins—the direct effectors of biological pro-
cesses. Here, we present a genome-wide approach,
based on ribosome profiling, for measuring absolute
protein synthesis rates. The resultant E. coli data set
transforms our understanding of the extent to which
protein synthesis is precisely controlled to optimize
function and efficiency. Members of multiprotein
complexes are made in precise proportion to their
stoichiometry, whereas components of functional
modules areproduceddifferentially according to their
hierarchical role. Estimates of absolute protein abun-
dance also reveal principles for optimizing design.
These include how the level of different types of tran-
scription factors is optimized for rapid response and
how a metabolic pathway (methionine biosynthesis)
balances production cost with activity requirements.
Our studies reveal how general principles, important
both for understanding natural systems and for syn-
thesizing new ones, emerge from quantitative ana-
lyses of protein synthesis.

INTRODUCTION

Protein biosynthesis is by far the largest consumer of energy dur-

ing cellular proliferation; translation by ribosomes is estimated

to account for �50% of the energy consumption of a rapidly

growing bacterial cell and �30% of that for a differentiating

mammalian cell (Buttgereit and Brand, 1995; Russell and

Cook, 1995). The tremendous cost associated with protein syn-

thesis makes it a key step for regulating diverse cellular func-

tions. Therefore, determining how a cell allocates its synthesis

capacity for each protein provides foundational information for

systems biology.
624 Cell 157, 624–635, April 24, 2014 ª2014 Elsevier Inc.
A fundamental question is whether it is necessary for the cell to

exert tight control over the synthesis of individual protein compo-

nents. For example, the levels of stoichiometric components of

protein complexes could be established by differential degrada-

tion of excess subunits (Blikstad et al., 1983; Lehnert and Lodish,

1988), rather than by precise synthesis. Moreover, precise con-

trol of steady-state protein abundance may not be critical for the

performance of cellular circuits. The architectures of several

signaling andmetabolic pathways have been shown to be robust

against variation in protein levels through posttranslational feed-

back (Alon et al., 1999; Barkai and Shilo, 2007; Batchelor and

Goulian, 2003; Hart et al., 2011; Shinar et al., 2007; von Dassow

et al., 2000). It remains to be explored whether these posttrans-

lational mechanisms are the dominant strategy for maintaining

proper functions or are simply fail-safe mechanisms added on

to fine-tuned protein synthesis. More generally, defining such

design principles is key to both understanding and manipulating

quantitative behavior of a cell.

Efforts to monitor protein synthesis rates at the global level

have mainly relied on pulsed metabolic labeling followed by 2D

gel electrophoresis or, more recently, by mass spectrometry

(Dennis, 1974; Lemaux et al., 1978; Schwanhäusser et al.,

2009). Although relative changes in synthesis rates for the

same protein are attainable (Selbach et al., 2008), absolute rates

are more difficult to evaluate. Additionally, the precision of

pulsed metabolic labeling is limited by requirement for nutrient

shifts, which affect instantaneous rates of protein synthesis.

Alternative methods for expression profiling by determining

global mRNA levels (e.g., by high-density microarrays or RNA

sequencing [RNA-seq]) do not report the extensive regulation

present at the level of translation. These constraints point to a

need for a label-free method with unbiased and deep coverage

of cellular proteins.

Ribosome profiling—deep sequencing of ribosome-protected

mRNA fragments—directly captures protein synthesis in natural

settings (Ingolia et al., 2009). It is a general tool for monitoring

expression as well as enabling identification of novel transla-

tional events (Brandman et al., 2012; Brar et al., 2012; Ingolia

et al., 2011; Li et al., 2012; Oh et al., 2011; Stern-Ginossar
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Figure 1. Absolute Quantification of Protein Synthesis Rates

(A) Effect of translational pausing on average ribosome density. Average

ribosome density is plotted for the first and second half of each gene. The

Pearson correlation for genes with at least 64 reads aligned to both halves (red)

is R2 = 0.92. The inset shows the distribution of the fold difference between the

second and the first halves (n = 2,870; SD, 1.3-fold).

(B) Agreement between published protein copy numbers and absolute syn-

thesis rates. The copy numbers of 62 proteins that have been individually

quantified in the literature are plotted against the absolute protein synthesis

rates (Pearson correlation, R2 = 0.96).

See also Figures S1 and S2 and Tables S1 and S2.
et al., 2012). Here, we exploited the ability of ribosome profiling

to provide quantitative measurements of absolute protein syn-

thesis rates, covering >96% of cellular proteins synthesized in

a single experiment. For stable proteins in bacteria, we then esti-

mated absolute protein copy numbers.

This analysis revealed precise tuning of protein synthesis rates

at the level of translation, including a broadly used ‘‘proportional

synthesis’’ strategy in which components of multiprotein com-

plexes are synthesized with ratios that quantitatively reflect

their subunit stoichiometry. Optimized translation rates are also

prevalent among members of functional modules—differential

expression pertinent to their functional hierarchy, i.e., when the

activity of one member is controlled by the other, was widely

observed in our data set. The protein copy numbers inferred

from synthesis rates also revealed rules that govern the abun-

dance of transcription factors (TFs) and allowed quantitative

characterization for the methionine (Met) biosynthesis pathway,

for which we identified a bottleneck enzyme whose expression

level is optimized for maximal growth rate. More broadly, our

approach and data sets provide a foundation for quantitative un-

derstanding of both cellular physiology and precise biological

engineering.

RESULTS

Genome-wide Measurement of Absolute Protein
Synthesis Rates and Protein Copy Numbers
The ribosome-profiling approach involves freezing of cellular

translation followed by digestion of all mRNA regions that

are not protected by the ribosome (Ingolia et al., 2009, 2012).

Each ribosome-protected mRNA fragment is then identified by

massively parallel next-generation sequencing (Ingolia et al.,

2009, 2012). Because each ribosome is producing one protein

molecule, the rate of protein synthesis is proportional to the ribo-

some density of a given gene as measured by the footprint den-

sity (number of footprint per unit length of the gene), provided

that all ribosomes complete a full-length protein and have similar

average rates of elongation across genes. Both criteria are

broadly met in our data set. During exponential growth in

E. coli, there is little drop-off in ribosome density for the vast ma-

jority of genes (Li et al., 2012; Oh et al., 2011) (Figure 1A). The few

genes that display large drop-off could represent novel events of

translational regulation (Figure S1A available online). We have

previously demonstrated that rare codons are generally trans-

lated at similar speed as abundant codons, indicating that

differences in codon usage between transcripts do not cause

differences in the average rates of elongation (Ingolia et al.,

2011; Li et al., 2012). Moreover, sequence-dependent pausing

of ribosomes (Li et al., 2012) does not appear to broadly distort

the average density of ribosomes along a message because

similar ribosome densities are observed in the first and second

halves of each gene. Most genes differ by <30% (SD of the

mean; Figure 1A). Additionally, correcting for sequence- and

position-specific variation in elongation rates has only a modest

effect on average ribosome density (Figure S1). Together, these

results indicate that local variations in translation speed do

not strongly impact synthesis rates measurements based on

average ribosome density.
Cell 157, 624–635, April 24, 2014 ª2014 Elsevier Inc. 625



To broadly evaluate the rates of protein synthesis, we per-

formed ribosomeprofiling inE. coligrown in different growth con-

ditions with high sequencing depth (90 million fragments per

sample) using a modified protocol that enables more complete

capture of footprints (Experimental Procedures). Within each

data set, synthesis rates were calculated as the average ribo-

some density in the gene body, with correction factors for

elevated ribosome density at internal Shine-Dalgarno sequences

and toward the beginning of open reading frames (Extended

Experimental Procedures). The corrections were small (Fig-

ure S1D) but were nonetheless important for the quantitative

analysis described below. We determined the absolute rates of

synthesis (in units of molecules produced per generation) by

normalizing the average ribosome density for each protein in

the proteome by the total amount of proteins synthesized during

the cell doubling time (Experimental Procedures). For growth in a

rich defined medium (Neidhardt et al., 1974), we evaluated 3,041

genes, which account for >96% of total proteins synthesized. A

similar number of genes were evaluated for glucose-supple-

mented minimal media. All of these genes have >128 ribosome

footprint fragments sequenced, with an error of less than 1.3-

fold across biological replicates. The lowest expression rate

among these genes corresponds to approximately tenmolecules

per generation. The complete list of protein synthesis rates can

be obtained at http://ecoliwiki.net/tools/proteome/ (Table S1).

We validated our results by comparing our data against pub-

lished measures of specific protein copy numbers for E. coli.

Because the overwhelming majority of proteins are long lived

compared to the cell cycle during exponential growth (Larrabee

et al., 1980), the absolute copy number of a protein can be

estimated as the synthesis rate multiplied by generation time

(21.5 min in rich defined media; see Experimental Procedures).

We compiled a list of 62 proteins that have been quantified indi-

vidually in 21 independent laboratories (Table S2). Although each

measurement is associated with its own uncertainty, we argue

that collectively they represent the current standard for quan-

tification. Our results agreed well with these published copy

numbers with a Pearson correlation coefficient of R2 = 0.96 (Fig-

ure 1B). Deviations from the identity line in Figure 1B likely reflect

a biological phenomenon. For example, the strongest outlier is

s32, the heat shock TF that is known to be actively degraded

(Grossman et al., 1987). Our measures based on synthesis rates

thus provide an upper bound for the protein levels for the small

subset of proteins that are rapidly degraded. Differences in

growth conditions and strain backgrounds contribute to other

small differences between literature values and our results (see

Extended Experimental Procedures). Existing efforts to globally

quantify protein abundance in E. coli using mass spectrometry

or fluorescent reporter show less concordance and dynamic

range (Figure S2). In conclusion, our genome-wide synthesis

rate measurements and the resulting estimate of protein abun-

dance are supported by classic biochemical measurements

across five orders of magnitude of protein abundance.

Proportional Synthesis of Multiprotein Complexes
We next used our measurements to evaluate the extent to

which fine-tuned synthesis rates are a general feature of cellular

physiology, focusing initially on members of stable multiprotein
626 Cell 157, 624–635, April 24, 2014 ª2014 Elsevier Inc.
complexes with known stoichiometry. The subunits of these

complexes require balanced steady-state levels because

excess components are often prone tomisfolding or aggregation

(Tyedmers et al., 2010). Although quality control mechanisms for

removing uncomplexed proteins exist (Shemorry et al., 2013),

it was unclear whether the stoichiometry balance is generally

established first at the synthesis level.

We first examined the F0F1 ATP synthase complex, which

consists of eight subunits, each with different stoichiometry,

expressed from a single polycistronic transcript (the ‘‘ATP

operon’’). Despite sharing the samemessage, the ribosome den-

sity of each open reading frame is clearly distinct (Figure 2A) and

qualitatively agrees with the differential synthesis rates previ-

ously reported by Brusilow et al. (1982) and Quax et al. (2013).

Remarkably, the synthesis rates quantitatively reflect the

stoichiometry of the complex; the ATP operon has evolved to

synthesize the appropriate ratio of subunit proteins, ranging

from 1- to 10-fold.

Rather than the ATP operon being a specialized case, we

found that tuning of synthesis rates to the subunit stoichiometry,

or ‘‘proportional synthesis,’’ is a broadly used strategy for protein

complexes. We systematically assembled a list of stable multi-

protein complexes with well-characterized stoichiometry in

E. coli (Table S3). Of the 64 complexes (comprising 212 different

proteins) that are expressed in our growth conditions, 59 (92%)

adhere to proportional synthesis. The majority (55%) is synthe-

sized at levels that are indistinguishable from the stoichiometry

(smaller than the experimental uncertainty of 1.3-fold difference).

The ratio of synthesis rates exceeds the ratio of stoichiometry by

a factor of two in only five complexes (Figure S3D), and this small

number of exceptions could suggest dominant control at the

level of degradation or the existence of dynamic subcomplexes,

as in the case of the outer-membrane protein assembly complex

(b-barrel assembly machine [BAM]) (Rigel et al., 2013).

Proportional synthesis applies to both cytosolic and mem-

brane proteins. For complexes with more than two components,

the agreement between synthesis rates and subunit stoichiom-

etry is plotted in Figures 2B and S3. We also observed very

similar synthesis rates for complexes with two equimolar sub-

units (Figures 2C and S3A–S3C). Notably, proportional synthesis

is robust against temperature; similar ratios in synthesis rates

were observed both at 37�C and at 10�C (Figure S4A). Further-

more, both abundant and scarce proteins have evolved strict

tuning of synthesis rates because the expression levels of these

complexes range over four orders of magnitude.

Proportional synthesis in E. coli is predominantly achieved

through translational, rather than transcriptional, control. The

majority of multiprotein complexes encode their subunits on a

single polycistronic mRNA, with each subunit translated from

its own initiation site (47 out of 64 complexes; Figures 2B, 2C,

and S3A). RNA-seq analysis confirms that the mRNA levels of

the genes in these operons are similar, whereas the different

translation efficiency (synthesis rate per mRNA) reflects the

stoichiometry (Figures S4B and S4C; Table S4). Moreover,

gene order does not explain differential synthesis rates (Figures

2A, 2C, and S4D), consistent with our previous observation that

translation rates among genes in the same operon are only

weakly correlated (inset in Figure 2C) (Oh et al., 2011). Protein

http://ecoliwiki.net/tools/proteome/


Figure 2. Proportional Synthesis of Multi-

protein Complexes

(A) Translation rates reflecting subunit stoichiom-

etry for the ATP operon. Eight subunits of the F0F1
ATP synthase are expressed from a polycistronic

mRNA, whose level as measured by RNA-seq is

shown in blue. Each subunit is associated with

different levels of ribosome density (green), and

the average density is proportional to the subunit

stoichiometry (right).

(B) Proportional synthesis for a diverse range

of complexes. Synthesis rates are plotted as a

function of the subunit stoichiometry for multi-

protein complexes whose subunits are encoded

in the same operon. Complexes with different

subunit stoichiometry or more than two subunits

are included here (also see C). The dashed line

indicates the best fit that crosses the origin.

(C) Proportional synthesis for complexes with two

equimolar subunits. Each complex is plotted for

the synthesis rates of the two subunits, with the

earlier (later) gene in the operon on the horizontal

(vertical) axis. A total of 28 equimolar and cotran-

scribed complexes, covering 4 orders of magni-

tude in expression level, are plotted here. Inset

shows the histogram of fold difference between

the synthesis rates of the two subunits. Our

experimental results are shown in red, and the

predicted values based on a thermodynamic

model considering the sequence surrounding

translation initiation sites are shown in blue (Salis

et al., 2009). The distribution of the differences in

translation rates for all other operons is shown in

gray. (B) and (C) show complexes whose subunits

are encoded on a single polycistronic operon. See

Figures S3B and S3C for examples of proportional

synthesis involving distinct transcripts.

See also Figures S3, S4, and S6 and Tables S3

and S4.
synthesis rates are generally determined by the frequency of

translation initiation (Andersson and Kurland, 1990). However,

our current understanding of what determines translation initia-

tion rates is highly incomplete because existing models for either

the strength of ribosome-binding site or the Shine-Dalgarno

sequence alone do not predict proportional synthesis (Fig-
Cell 157, 624–6
ure 2C) (Salis et al., 2009). Transla-

tional autoregulation (Nomura et al.,

1984), coupling (Baughman and Nomura,

1983), or specific RNA secondary struc-

tures (McCarthy and Gualerzi, 1990) are

factors that could contribute to precise

tuning of synthesis rates. Our discovery

of proportional synthesis in polycis-

tronic messages should help guide ef-

forts to dissect the molecular mechanism

of translation initiation quantitatively,

as well as aid the precise engineering of

synthetic biological networks.

The use of translational control and

polycistronic operons to achieve propor-
tional synthesis has important potential advantages. In partic-

ular, setting the ratios of subunit expression levels exclusively

at the translational level greatly simplifies transcriptional regula-

tion; the cell needs only to control the overall expression of

the complex, and not the relative amounts within the complex.

Additionally, sharing the same polycistronic mRNA reduces
35, April 24, 2014 ª2014 Elsevier Inc. 627
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Figure 3. Proportional Synthesis for Complexes in Yeast

(A) Proportional synthesis for multiprotein complexes in S. cerevisiae.

Synthesis rates are plotted as a function of the subunit stoichiometry for

complexes with more than two subunits. For the signal recognition particle,

four subunits (Srp14/Srp21/Srp68/Srp72) are synthesized according to their

stoichiometry, and the other two are exceptions.

(B) Proportional synthesis for heterodimeric complexes in S. cerevisiae. Each

complex is plotted for the synthesis rate of the two subunits.

(C) Proportional synthesis for complexes with paralogous subunits. For each

complex, the subunits that can substitute each other are plotted in the same

column.
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stochastic imbalance among components of the complex.

Because transcription originates from a single gene locus and

is thus inherently noisy (Li and Xie, 2011), the ratio of proteins

encoded on different mRNAs would be subject to much higher

noise levels (Elowitz et al., 2002; Swain, 2004). The use of poly-

cistronic mRNAs circumvents this issue, but translational tuning

becomes necessary to achieve different expression levels.

Evidence for Proportional Synthesis in Budding Yeast
We found evidence that the budding yeast S. cerevisiae also

exhibits tightly controlled synthesis of stably associated protein

complexes, as indicated by our analysis of a subset of highly

characterized complexes (Figures 3A and 3B). Genomic duplica-

tion events in S. cerevisiae have led to numerous paralogous

genes, which in some cases can substitute for each other in

multiprotein complexes. Interestingly, we found that proportional

synthesis is maintained by tuning the synthesis rates for dupli-

cated genes that encode the same subunit. For example, the

two a-tubulin genes together are translated at a similar rate

as the single b-tubulin gene (Figure 3C). Similarly, for the COPII

Sec23/24 heterodimer, the production rate of Sec23 matches

that of Sec24 and its two homologs (Sfb2 and Sfb3) combined

(Figure 3C). A notable exception for proportional synthesis is

the signal recognition particle, for which four subunits are trans-

lated at a 1:1:2:2 ratio, and the other two subunits are in excess

(Figure 3A). It has also been shown that vertebrates produce un-

even amounts of a- versus b-spectrin and immunoglobulin light

chains versus heavy chains (Blikstad et al., 1983; Lehnert and

Lodish, 1988; Shapiro et al., 1966). Understanding the rationale

behind the unequal synthesis in these exceptions could provide

insights into their physiological functions.

Yeasts must employ distinct mechanisms to achieve propor-

tional synthesis because subunits are encoded on different

mRNAs in eukaryotes. For example, the dynamics of nuclear

localization of TFs and their affinity to promoter sites could pro-

vide independent control for complex levels and subunit ratios

(Cai et al., 2008). Given the fundamentally different molecular

mechanisms for prokaryotic and eukaryotic expression, these

observations argue that proportional synthesis is a result of

convergent evolution that maximizes protein synthesis efficiency

while minimizing the adverse effects of having uncomplexed

subunits.

The broad use of proportional synthesis has important impli-

cations for the effect of aneuploidy. Most genes do not possess

feedback mechanisms for controlling their expression levels

(Springer et al., 2010). Thus, a sudden change in gene dosage

would lead to a large imbalance of subunits (Papp et al., 2003).

Because cells normally do not face large imbalances in the syn-

thesis rate ofmultiprotein complexes, aneuploidy would lead to a

strong challenge to the protein folding and chaperone networks,

consistent with the findings of Amon and coworkers that general

proteotoxic stress is a hallmark of aneuploidy (Oromendia et al.,

2012; Torres et al., 2008).

Taken together, our findings argue that the relative expression

of members of multiprotein complexes is primarily determined at

the synthesis level and that targeted degradation of excess sub-

units is a secondary layer of control. Indeed, components of mul-

tiprotein assemblies whose uncomplexed subunits have been
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Figure 4. Hierarchical Expression for Func-

tional Modules

(A) Synthesis rates for TAmodules. E. coli contains

12 type II TA systems that are each expressed

from a polycistronic mRNA. (The order of genes

differs among systems.) The antitoxin protein

binds to and inhibits the toxin protein, while re-

pressing its own transcription. The synthesis rates

for each system are plotted (bottom). Modules

with the toxin gene preceding the antitoxin gene in

the operon are marked by an asterisk.

(B) Synthesis rates for s-anti-s modules. The

anti-s binds to and inhibits the s, preventing

transcription from the promoter driven by the

corresponding s. The synthesis rates for each

system are plotted (bottom).

(C) Synthesis rates for two-component signaling

systems. Bacterial two-component signaling sys-

tem consists of a membrane-bound HK and the

cognate RR. The synthesis rates for 26 two-

component systems in E. coli are plotted (bottom).

(D) Synthesis rates for ABC transporters. An

ABC transporter consists of a core membrane

transporter, an ATP-binding domain, and the

corresponding periplasmic-binding proteins. The

synthesis rates for each transporter are plotted

(bottom).
shown to be degraded, including the ribosomal L8 complex and

the SecYEG translocon in E. coli and Fas1/2 in S. cerevisiae, also

show proportional synthesis (Akiyama et al., 1996; Petersen,

1990; Schüller et al., 1992).

Hierarchical Expression of Functional Modules
Stable protein complexes are only one of a wide range of func-

tional modules that are organized into operons in bacteria, lead-

ing us to ask whether translational control also sets expression

of other types of functional modules. Because our genome-

wide ribosome-profiling data set covers many different modules

in the same functional class, we can use our data to identify com-

mon expression pattern strategies that are selected through

evolution. Our studies of several different modules identified a

second pattern: hierarchical expression, in which components

are differentially expressed according to their hierarchical role.
Cell 157, 624–6
Bacterial toxin-antitoxin (TA) modules

are widely utilized two-gene systems

that control cellular survival (Yamaguchi

et al., 2011). The role of antitoxin is to

bind to and inhibit its cognate toxin.

E. coli contains at least 12 type II TA sys-

tems, each consisting of a toxin protein

and an antitoxin protein in a bicistronic

operon (Yamaguchi et al., 2011). For

every well-characterized type II TA sys-

tem, we found that the antitoxin is synthe-

sized at a much higher rate than the toxin

(Figure 4A), which would allow E. coli to

produce a sufficient amount of antitoxin

to avoid triggering cell death or growth
arrest during unstressed growth. The hierarchical expression

between antitoxin and toxin is irrespective of their relative order

in the operon (Figure 4A). Because most toxins target global

translation, the translational control observed for hierarchical

expression of TA modules may provide insight into how the

system switches to a toxin-dominated state via translational

feedback—a central question in antibiotic persistence (Gerdes

and Maisonneuve, 2012).

s/anti-s modules are conceptually similar to TA modules.

Both are usually encoded in the same operon, and anti-s

inhibits the transcriptional activity of the s by direct binding.

Interestingly, anti-ss, like antitoxins, are produced in excess

compared to ss (Figure 4B). In both cases, the uncomplexed

antagonists (antitoxins and anti-ss) are also subject to regulated

degradation (Ades et al., 1999; Yamaguchi et al., 2011). Thus,

the hierarchical expression would not be evident by measuring
35, April 24, 2014 ª2014 Elsevier Inc. 629



A

B

Translation

Nucleotide & 
amino acid metabolism

Cell wall & membrane 
synthesis

Carbohydrate metabolism

Membrane transport

Protein folding & decay

Transcription

Other enzymes

DNA replication
Unknown

0

2

4

6

EF-TU Lpp OmpA RpsA OmpC AceE EF-G RplL AceF RpsB
Protein

M
as

s 
fr

ac
tio

n 
(%

)

Figure 5. Composition of the E. coli Proteome

(A) Breakdown of the proteome by functions. The mass fraction of the prote-

ome that is devoted to specific biological functions is plotted as a pie chart.

The copy numbers were estimated for E. coli grown in rich defined medium

(Experimental Procedures).

(B) Ten proteins with the largest mass fraction in the proteome. The color used

for each protein corresponds to the biological function indicated in (A).
protein levels, even though cells ensure an excess of inhibitor

during synthesis.

Translationally controlledhierarchical expressionappears tobe

common for a diverse range of functional modules. ATP-binding

cassette (ABC) transporters are comprised of core transmem-

brane proteins and corresponding substrate-binding periplasmic

proteins. Whereas the core membrane complex components

follow the proportional synthesis principle elucidated above (Fig-

ures 2B and 2C), we found that the periplasmic-binding proteins

are always in large excess (Figure 4D), suggesting that substrate

binding is slower than transport across the membrane. Two-

component signaling systems, consisting of a histidine kinase

(HK) and its substrate, a response regulator (RR), also exhibit hier-

archical translation. For eachof the26 two-component systems in

E. coli, the substrate is synthesized at amuch higher level than the

kinase (Figure 4C). Using mathematical modeling and experi-

mental validation, it has been demonstrated that a large excess

of a RR relative to an HK promotes robustness against variations

in RR and HK levels (Batchelor and Goulian, 2003; Shinar et al.,

2007). Here, we show that this strategy is universally employed

for all two-component systems.

Taken together, these results show that hierarchical expres-

sion within operons is a key design principle for many diverse

functional modules. As illustrated in the four examples above,

the same hierarchy of expression levels is repetitively used for
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the same type of module, pointing to a common quantitative

property that is critical for the execution of each task. The exam-

ples here are certainly an incomplete list; more quantitative

design principles could be uncovered by identifying commonal-

ities among similar systems in such genome-wide data sets.

Bacterial Proteome Composition
Because the large majority of proteins are stable in E. coli (Larra-

bee et al., 1980), our protein synthesis rate data provide a

comprehensive view of proteome composition, allowing us to

probe how cells allocate resources (Figure 5). By far, the largest

fraction of the protein synthesis capacity is dedicated to making

the machinery needed for further translation (41% for growth in

rich media and 21% in minimal media), whereas transcription-

related proteins account for only 5%. This disparity illustrates

the importance of understanding the translational control sys-

tems that allow cells to allocate their translational capacity.

The ability to monitor the partitioning of protein synthesis capac-

ity under different conditions will provide a critical tool for quan-

titative characterization of cellular physiology.

The expression level of every protein in the cell is subject to

two opposing constraints: the requirement of its function, and

the cost associated with having an excess that consumes limited

resources, such as protein synthesis capacity, quality control

machineries, and space (Dekel and Alon, 2005). Our data set

opens up the possibility of broadly investigating how these

competing constraints govern protein expression levels. We

select two specific cellular functions (TFs and Met biosynthesis)

for further study.

Copy Numbers of TFs Reveal Their Mode of Action
The bacterial chromosome is densely covered with TFs that bind

DNA both specifically and nonspecifically (Li et al., 2009). The

crowded space on DNA imposes constraints on the abundance

of TFs because overcrowding by nonspecifically associated

DNA-bindingproteins coulddrastically reduce theoverall binding

kinetics (Hammar et al., 2012; Li et al., 2009). Thus, although

higher concentrations of any given TF would allow it to find its

cognate DNA sites more rapidly (von Hippel, 2007), too many

TFs in total would mask binding sites. Based on our protein-

abundance estimates, we found that the average distance

betweenDNA-binding proteins is only�36 bp on the E. coli chro-

mosome (assuming that most DNA-binding proteins are associ-

ated with DNA nonspecifically and are randomly distributed

throughout the genome; see Extended Experimental Proce-

dures), which is close to the theoretically optimal density for rapid

binding (Li et al., 2009). How cells allocate the limited space on

DNA tomaximize rapid regulation by each TF remained obscure.

Our data indicate that the �200 well-characterized TFs in

E. coli show a wide variation in level—more than 60% of the

TFs are found to have an upper bound of fewer than 100 mono-

mers per genome equivalent (Figures 6A and 6B). A low copy

number for a TF implies a slow association rate to DNA, which

could lead to slow transcriptional responses (Winter et al.,

1981). For example, single-molecule imaging in vivo previously

revealed that it takes 6 min for one Lac repressor to find a single

binding site in a cell (Elf et al., 2007). Compared to the cell

doubling time, which can be as short as 20 min, the binding



A B

C

1 100 10000 1 100 10000

Cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

Cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

Unknown

Ligand
dependent

Ligand
independent

Copy number
(per genome equivalent)

Fr
ac

tio
n

DNA binding:

0.0

0.5

1.0

<10 100 1000 10000

Copy number
(per genome equivalent)

Copy number
(per genome equivalent)

N = 15 42 26 7

0.0

Activator
Repressor

Dual Regulator

0.2

0.4

0.6

0.8

1.0

Positive
autoregulator

Negative
autoregulator

0.0

0.2

0.4

0.6

0.8

1.0 Figure 6. Abundance of TFs

(A) Cumulative distribution of abundance for
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class of TF is plotted as a function of the copy
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(B) Cumulative distribution of abundance for

autoregulators. The cumulative distributions for
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as a function of the copy number per genome
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(C) Ligand dependence of target binding. Among

TFs whose abundance falls into a given range, the

fraction that binds to the target site in a ligand-

dependent way is shown in blue, and the fraction

that binds to the target site independent of ligands

is shown in green. The number of TFs analyzed is

indicated above each bin.

See also Table S5.
kinetics for a low copy number TF would make it difficult to

achieve timely regulation. This can be circumvented with the

use of TFs that are always bound to their target but whose ability

to recruit RNA polymerase depends on the presence of ligands

because the kinetics of regulation would be determined by diffu-

sion of the small ligand rather than by diffusion of the bulky and

far less abundant protein. We therefore hypothesize that the low

copy number TFs have evolved to bind to DNA independent of

their activity.

To test this hypothesis, we mined the literature for the

biochemical properties of 102 TFs in E. coli (Table S5). We found

that abundant TFs bind to DNA only in response to ligands (Fig-

ure 6C). By contrast, the large majority of low abundance TFs

bind to the target sites independent of the corresponding ligands

(Figure 6C). Therefore, cells optimize the limited space on DNA

and the need for rapid regulation by requiring that TFs with low

abundance always bind to their target sites. This mode of DNA

binding for low copy number TFs also supports the model that

TFs have evolved to occupy their target sites in native environ-

ments (Savageau, 1977; Shinar et al., 2006). This class of TFs

can be exploited to build transcriptional circuits with fast

response timewithout incurring extra synthesis cost andnonspe-

cific interactions. A potential downside, however, is increased

gene expression noise due to stochastic TF dissociation.

Precise Control of Enzyme Production Required for Met
Biosynthesis
The expression of metabolic enzymes similarly faces two con-

straints: the requirement for function, and the cost of synthesis.
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Metabolic control analysis suggests that

enzymes are generally made in excess

amounts, such that small changes in

the level for each enzyme have moder-

ate effects on the output (Fell, 1997).

On the other hand, the pools of bacterial

enzymes in related metabolic pathways

are strictly dependent on growth rates

(You et al., 2013), arguing for precise
control of expression based on cellular need. Thus, the prin-

cipal determinant of expression remained obscure. Here, we

show that our quantification of the proteome composition

makes it possible to globally analyze the relationship between

the levels of metabolic enzymes and their actual reaction

fluxes.

We focused on the well-characterized L-Met biosynthetic

pathway for E. coli grown in media devoid of Met. We first calcu-

lated the cellular demand for this pathway (31,000 s�1 Met per

cell), i.e., the rate of Met consumption by protein synthesis, by

summing up the absolute rates of protein synthesis we deter-

mined for each protein multiplied by the number of Met residues

in that protein. The other major pathway that consumes Met,

which is the synthesis of S-adenosyl-L-Met, was estimated

to contribute to a small fraction of the overall flux (Feist et al.,

2007) (see also Extended Experimental Procedures). We then

compared the rate of Met consumption with themaximum veloc-

ity (Vmax) for its biosynthetic pathway. For each reaction in the

pathway, we calculated Vmax by multiplying the enzyme abun-

dance we determined by its published turnover number (kcat)

(Schomburg et al., 2002). The Vmax varies bymore than one order

of magnitude among the reactions in Met biosynthesis, sug-

gesting that most reactions do not operate at saturating sub-

strate concentration. The last step that is catalyzed by MetE

has among the smallest Vmax (Figure 7A), suggesting that it

may be a bottleneck in this pathway. Remarkably, we found

that the maximal Met production rate allowed by MetE (Vmax,

34,000 s�1 per cell) matches the Met consumption rate. There-

fore, under these growth conditions, MetE-catalyzed conversion
35, April 24, 2014 ª2014 Elsevier Inc. 631



Figure 7. Quantitative Analysis of the Met

Biosynthesis Pathway

(A) Maximal reaction rates for the intermediate

steps. For each step of the pathway, the Vmax,

inferred from the enzyme abundance in vivo and

the kcat measured in vitro, is shown as the width of

the blue bar. The last step that is catalyzed by the

enzyme MetE has a Vmax of 34,000 Met/s/cell,

whereas the flux of Met into protein synthesis

is 31,000 Met/s/cell. The scatterplot on the right

shows upregulation of these enzymes in media

without Met. MOPS, 3-(N-morpholino)propane-

sulfonic acid.

(B) Model predicting the optimal MetE level. In a

model that considers the cost and benefit of MetE

expression, the maximal growth rate is plotted as

a function of the mass fraction of MetE in the

proteome. The cost due to competition with new

ribosome synthesis is shown in red, and the

benefit from increased Met flux is shown in blue.

The maximal growth rate is highest (28 min) when

the mass fraction of MetE is �7%. This prediction

agrees with experimental results.

See also Figure S5.
of L-homocysteine to L-Met is a bottleneck step that operates at

maximal velocity with saturating substrate concentration.

Given that Met biosynthesis by MetE is limiting the overall rate

of protein synthesis, why do cells not simply make more MetE

protein? MetE is a large and slow enzyme, whose production

consumes �8% of the total protein synthesis capacity in media

devoid of Met. We investigated whether the cost of increasing

MetE production further would outweigh its benefit. To do so,

we constructed a simple analytical model for the effect of MetE

expression on growth rate (Figure 7B; Experimental Procedures).

The model considers the cost and benefit of MetE synthesis

independently and allows us to evaluate the level of synthesis

where the trade-off between cost and benefit is optimized. The

benefit of producing MetE arises from our observation that it is

a bottleneck for the Met supply for protein synthesis. Hence,

devoting more protein synthesis capacity to MetE increases

growth rate linearly (Experimental Procedures). The cost of pro-

ducing excess proteins, independent of their function, comes

from competition for ribosomes—an effect that has been widely

studied for E. coli (Dekel and Alon, 2005; Dong et al., 1995; Scott

et al., 2010). To evaluate this cost, we used the well-validated

numerical relationship described by Scott et al. (2010).

These two constraints predict that the fastest growth rate, a

28 min doubling time, is achieved at an optimal MetE level of 7%

of protein synthesis capacity (Figure 7B). Remarkably, these pre-

dictions were in close agreement with the actual values observed

for cells lackingMet: 27min doubling time and 8%of protein syn-

thesis capacity devoted to MetE. We verified experimentally that

both decrease and increase in MetE production lead to slower

growth (Figure S5). Therefore, the expression of the key enzyme

MetE is accurately tuned to allow the highest possible growth
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rate. Furthermore, the cost of expressing

MetE is the main determinant for the

slower growth rate when Met is limiting.
Our quantitative analysis of theMet pathway revealed a bottle-

neck step and its relationship to fitness. The same approach

should be applicable for a broad range of cellular and engineered

metabolic pathways, for which the control points are still largely

unknown. In addition, the global analysis of maximum reaction

velocity (Vmax) can be used in concert with flux balance analysis

(Price et al., 2004; Schuetz et al., 2012) to identify possible routes

of metabolic flux at a given condition. More broadly, the global

quantification of absolute enzyme concentration provides a

transformative tool for studying cellular metabolism.

DISCUSSION

We illustrate here the capacity to measure absolute synthesis

rates for cellular proteins and its utility for deciphering the logic

behind the design principles of biological networks. We identify

the rules underlying the observed synthesis rates for many

distinct classes of proteins. These include proportional synthesis

for multiprotein complexes and hierarchical expression for com-

mon functional modules, both of which are made possible by

finely tuned rates of translation initiation.We anticipate that there

are many more principles embedded in this and similar data sets

that will both elucidate the regime inwhich biochemical reactions

operate, and provide a foundation for rational design of synthetic

biological systems.

Our genome-wide data set on protein synthesis rates also

allows in-depth analysis of how cells optimize the use of limited

resources. Specifically, these data revealed strategies for allo-

cating limited space on DNA and limited protein synthesis

capacity—TFs can be kept at low abundances without kinetic

penalties by prebinding to target sites, and the synthesis rate



of a key enzyme that limits metabolic flux in the Met biosynthetic

pathway is optimized to achieve a maximal growth rate. Limited

resources of various kinds pose constant challenges to all cells.

Our approach reveals how the translational capacity of a cell is

allocated in the face of these challenges, greatly expanding

our ability to perform systems level analyses that were previously

limited to selected proteins and pathways.

Althoughour studies illustrate the role of precisely tunedprotein

synthesis rates in bacteria, our knowledge of how this transla-

tional control is achieved remains highly limited. Understanding

the control of translation initiation is both of fundamental impor-

tance and a prerequisite for quantitative design in synthetic

biology. Yet, our current approaches for predicting translation

rates,basedon thestrengthofShine-Dalgarnosite andcomputed

RNA structure (Salis et al., 2009), fail to accurately account for the

observed differences in translation initiation rates (Figure S6).

Empirical measures of mRNA structures as they exist in the cell,

in combination with our measures of translation efficiency (Table

S4), could be a key tool in addressing this deficiency.

Although we focus on bacterial cells in this work, our approach

to globally measure absolute protein synthesis rates has broader

applicability. Any species that is amenable to ribosome profiling

and has an annotated genome can be subject to this line

of investigation; the growing list currently includes both Gram-

negative and Gram-positive bacteria, budding yeast, nema-

todes, fruit fly, zebrafish, and mammals. For eukaryotes and

multicellular organisms, our approach will likely reveal a distinct

set of principles and constraints for optimizing the allocation of

biosynthetic capacities. Furthermore, the breakdown of these

principles under stress conditions, such as aneuploidy and tem-

perature and chemical shock, will provide critical insight into the

modes of failure and their rescue mechanisms.

EXPERIMENTAL PROCEDURES

Ribosome Profiling

Bacterial cells grown in specified liquid media were harvested by rapid filtra-

tion followed by flash freezing in liquid nitrogen. Ribosome-protected mRNA

footprints were extracted from pulverized lysates as previously described (Li

et al., 2012; Oh et al., 2011). Different from previous procedures, a wider range

of mRNA footprint sizes (�15–45 nt long) was selected on a denaturing

polyacrylamide gel. The mRNA fragments were converted to a cDNA library

as previously described (see Extended Experimental Procedures) (Ingolia

et al., 2009; Li et al., 2012; Oh et al., 2011). Deep sequencing was performed

by Illumina HiSeq 2000.

Analysis for Absolute Synthesis Rates

Counts of ribosome footprints for each gene were first corrected for the

elevated density toward the start codon. A metagene analysis for the relative

density as a function of the distance to start codons was used as a calibration.

The resulting counts were corrected for the elevated ribosome density down-

stream from internal Shine-Dalgarno sequences. For each position on the

gene, the affinity of the upstream hexameric sequence to the anti-Shine-

Dalgarno sequence was used to calibrate the distance-corrected counts (Li

et al., 2012). The calibration curve was obtained empirically by fitting the

observed average ribosome occupancy of hexameric sequences as a function

of the hybridization energy to the anti-Shine-Dalgarno sequence. The resulting

ribosome density was averaged within the gene body, excluding the first five

and the last five codons.

The relative ribosome density was converted to absolute protein synthesis

rates using the total weight of cellular protein. The relative synthesis rate of a

protein, as measured by its corrected ribosome density compared to that of
all proteins, was multiplied by the weight of total proteins per cell—a proxy

for the amount of proteins synthesized in a cell cycle. The weight of total pro-

teins per cell was estimated by dividing the amount of proteins per unit volume

of cell culture, which was measured using the Lowry method with BSA as

standard after trichloroacetic acid precipitation, by the number of cells per

unit volume, which wasmeasured by counting colony-forming units after serial

dilution. The absolute synthesis rates listed in Table S1 are also available

through PortEco (Hu et al., 2014).

Model for Cost and Benefit of MetE

In order to understand the amount of MetE expressed in the medium without

Met, we constructed a quantitative model to predict the optimal level of MetE

and growth rate. The model considers the cost and benefit of MetE synthesis

on growth rate. The cost function is based on previous observations that syn-

thesis of excess proteins competes with that of new ribosomal proteins, which

in turn leads to slower growth rate (Scott et al., 2010). Based on the work by

Scott et al. (2010), this relationship is l = l0(1 � ((fm/c + fE)/fC)), where l is

the growth rate, l0 is the growth rate when Met is not limiting, fE is the mass

fraction of MetE, fm/c is the mass fraction of all other enzymes in the Met

and cysteine biosynthetic pathways, and fC is the phenomenological fitting

parameter that was established in their work. The benefit function is based

on our observation that the level of MetE determines that rate of Met synthesis

and its consumption by protein synthesis: NEkcat = fmetNRke. NE, NR are the

numbers of MetE and translation ribosome, respectively. kcat, ke are the kcat
of MetE and translation elongation rate, respectively. fmet is the fraction of

translated codons that encodes Met. Rewriting this equation using fE and l

gives l = kcatfE/fmetlE, where lE is the number of amino acid residues in

MetE. These two functions relating the growth rate and the mass fraction of

MetE are plotted in Figure 7C.

ACCESSION NUMBERS

Data are available at Gene Expression Omnibus with accession number

GSE53767.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, and five tables and can be found with this article online at http://dx.

doi.org/10.1016/j.cell.2014.02.033.

ACKNOWLEDGMENTS

We thank L. Qi for providing material for CRISPRi knockdown; R. Milo, K.C.

Huang, J. Elf, J. Dunn, G. Brar, O. Brandman, C. Jan, J. Rabinowitz, and mem-

bers of the J.S.W. and C.G. labs for discussions; and P. Choi and H. Chen for

critical reading of the manuscript. We also thank J. Lund and E. Chow for help

on sequencing and C. Reiger and M. DeVera for administrative support. This

research was supported by the Helen Hay Whitney Foundation (to G.-W.L.),

NIH Pathway to Independence Award (GM105913 to G.-W.L.), NIH Center

for RNA Systems Biology (to J.S.W.), and Howard Hughes Medical Institute

(to J.S.W.).

Received: September 26, 2013

Revised: December 31, 2013

Accepted: February 11, 2014

Published: April 24, 2014

REFERENCES

Ades, S.E., Connolly, L.E., Alba, B.M., and Gross, C.A. (1999). The Escherichia

coli sigma(E)-dependent extracytoplasmic stress response is controlled by

the regulated proteolysis of an anti-sigma factor. Genes Dev. 13, 2449–2461.

Akiyama, Y., Kihara, A., Tokuda, H., and Ito, K. (1996). FtsH (HflB) is an ATP-

dependent protease selectively acting on SecY and some other membrane

proteins. J. Biol. Chem. 271, 31196–31201.
Cell 157, 624–635, April 24, 2014 ª2014 Elsevier Inc. 633

http://dx.doi.org/10.1016/j.cell.2014.02.033
http://dx.doi.org/10.1016/j.cell.2014.02.033


Alon, U., Surette, M.G., Barkai, N., and Leibler, S. (1999). Robustness in bac-

terial chemotaxis. Nature 397, 168–171.

Andersson, S.G., and Kurland, C.G. (1990). Codon preferences in free-living

microorganisms. Microbiol. Rev. 54, 198–210.

Barkai, N., and Shilo, B.Z. (2007). Variability and robustness in biomolecular

systems. Mol. Cell 28, 755–760.

Batchelor, E., and Goulian, M. (2003). Robustness and the cycle of phosphor-

ylation and dephosphorylation in a two-component regulatory system. Proc.

Natl. Acad. Sci. USA 100, 691–696.

Baughman, G., and Nomura, M. (1983). Localization of the target site for trans-

lational regulation of the L11 operon and direct evidence for translational

coupling in Escherichia coli. Cell 34, 979–988.

Blikstad, I., Nelson, W.J., Moon, R.T., and Lazarides, E. (1983). Synthesis and

assembly of spectrin during avian erythropoiesis: stoichiometric assembly but

unequal synthesis of alpha and beta spectrin. Cell 32, 1081–1091.

Brandman, O., Stewart-Ornstein, J., Wong, D., Larson, A., Williams, C.C., Li,

G.W., Zhou, S., King, D., Shen, P.S., Weibezahn, J., et al. (2012). A ribo-

some-bound quality control complex triggers degradation of nascent peptides

and signals translation stress. Cell 151, 1042–1054.

Brar, G.A., Yassour, M., Friedman, N., Regev, A., Ingolia, N.T., andWeissman,

J.S. (2012). High-resolution view of the yeast meiotic program revealed by

ribosome profiling. Science 335, 552–557.

Brusilow, W.S., Klionsky, D.J., and Simoni, R.D. (1982). Differential polypep-

tide synthesis of the proton-translocating ATPase of Escherichia coli.

J. Bacteriol. 151, 1363–1371.

Buttgereit, F., and Brand, M.D. (1995). A hierarchy of ATP-consuming pro-

cesses in mammalian cells. Biochem. J. 312, 163–167.

Cai, L., Dalal, C.K., and Elowitz, M.B. (2008). Frequency-modulated nuclear

localization bursts coordinate gene regulation. Nature 455, 485–490.

Dekel, E., and Alon, U. (2005). Optimality and evolutionary tuning of the expres-

sion level of a protein. Nature 436, 588–592.

Dennis, P.P. (1974). In vivo stability, maturation and relative differential synthe-

sis rates of individual ribosomal proteins in Escherichia coliB/r. J. Mol. Biol. 88,

25–41.

Dong, H., Nilsson, L., and Kurland, C.G. (1995). Gratuitous overexpression of

genes in Escherichia coli leads to growth inhibition and ribosome destruction.

J. Bacteriol. 177, 1497–1504.

Elf, J., Li, G.W., and Xie, X.S. (2007). Probing transcription factor dynamics at

the single-molecule level in a living cell. Science 316, 1191–1194.

Elowitz, M.B., Levine, A.J., Siggia, E.D., and Swain, P.S. (2002). Stochastic

gene expression in a single cell. Science 297, 1183–1186.

Feist,A.M.,Henry,C.S.,Reed, J.L.,Krummenacker,M., Joyce, A.R., Karp,P.D.,

Broadbelt, L.J., Hatzimanikatis, V., and Palsson, B.O. (2007). A genome-scale

metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for

1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3, 121.

Fell, D. (1997). Understanding the Control of Metabolism (London: Portland

Press).

Gerdes, K., and Maisonneuve, E. (2012). Bacterial persistence and toxin-anti-

toxin loci. Annu. Rev. Microbiol. 66, 103–123.

Grossman, A.D., Straus, D.B., Walter, W.A., and Gross, C.A. (1987). Sigma 32

synthesis can regulate the synthesis of heat shock proteins in Escherichia coli.

Genes Dev. 1, 179–184.

Hammar, P., Leroy, P., Mahmutovic, A., Marklund, E.G., Berg, O.G., and Elf, J.

(2012). The lac repressor displays facilitated diffusion in living cells. Science

336, 1595–1598.

Hart, Y., Madar, D., Yuan, J., Bren, A., Mayo, A.E., Rabinowitz, J.D., and Alon,

U. (2011). Robust control of nitrogen assimilation by a bifunctional enzyme in E.

coli. Mol. Cell 41, 117–127.

Hu, J.C., Sherlock, G., Siegele, D.A., Aleksander, S.A., Ball, C.A., Demeter, J.,

Gouni, S., Holland, T.A., Karp, P.D., Lewis, J.E., et al. (2014). PortEco: a

resource for exploring bacterial biology through high-throughput data and

analysis tools. Nucleic Acids Res. 42 (Database issue), D677–D684.
634 Cell 157, 624–635, April 24, 2014 ª2014 Elsevier Inc.
Ingolia, N.T., Ghaemmaghami, S., Newman, J.R., and Weissman, J.S. (2009).

Genome-wide analysis in vivo of translation with nucleotide resolution using

ribosome profiling. Science 324, 218–223.

Ingolia, N.T., Lareau, L.F., and Weissman, J.S. (2011). Ribosome profiling of

mouse embryonic stem cells reveals the complexity and dynamics of mamma-

lian proteomes. Cell 147, 789–802.

Ingolia, N.T., Brar, G.A., Rouskin, S., McGeachy, A.M., and Weissman, J.S.

(2012). The ribosome profiling strategy for monitoring translation in vivo by

deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 7,

1534–1550.

Larrabee, K.L., Phillips, J.O., Williams, G.J., and Larrabee, A.R. (1980). The

relative rates of protein synthesis and degradation in a growing culture of

Escherichia coli. J. Biol. Chem. 255, 4125–4130.

Lehnert, M.E., and Lodish, H.F. (1988). Unequal synthesis and differential

degradation of alpha and beta spectrin during murine erythroid differentiation.

J. Cell Biol. 107, 413–426.

Lemaux, P.G., Herendeen, S.L., Bloch, P.L., and Neidhardt, F.C. (1978). Tran-

sient rates of synthesis of individual polypeptides in E. coli following tempera-

ture shifts. Cell 13, 427–434.

Li, G.W., and Xie, X.S. (2011). Central dogma at the single-molecule level in

living cells. Nature 475, 308–315.

Li, G.W., Berg, O.G., and Elf, J. (2009). Effects of macromolecular crowding

and DNA looping on gene regulation kinetics. Nat. Phys. 5, 294–297.

Li, G.W., Oh, E., and Weissman, J.S. (2012). The anti-Shine-Dalgarno

sequence drives translational pausing and codon choice in bacteria. Nature

484, 538–541.

McCarthy, J.E., and Gualerzi, C. (1990). Translational control of prokaryotic

gene expression. Trends Genet. 6, 78–85.

Neidhardt, F.C., Bloch, P.L., and Smith, D.F. (1974). Culture medium for enter-

obacteria. J. Bacteriol. 119, 736–747.

Nomura, M., Gourse, R., and Baughman, G. (1984). Regulation of the synthesis

of ribosomes and ribosomal components. Annu. Rev. Biochem. 53, 75–117.

Oh, E., Becker, A.H., Sandikci, A., Huber, D., Chaba, R., Gloge, F., Nichols,

R.J., Typas, A., Gross, C.A., Kramer, G., et al. (2011). Selective ribosome

profiling reveals the cotranslational chaperone action of trigger factor in vivo.

Cell 147, 1295–1308.

Oromendia, A.B., Dodgson, S.E., and Amon, A. (2012). Aneuploidy causes

proteotoxic stress in yeast. Genes Dev. 26, 2696–2708.

Papp, B., Pál, C., and Hurst, L.D. (2003). Dosage sensitivity and the evolution

of gene families in yeast. Nature 424, 194–197.

Petersen, C. (1990). Escherichia coli ribosomal protein L10 is rapidly degraded

when synthesized in excess of ribosomal protein L7/L12. J. Bacteriol. 172,

431–436.

Price, N.D., Reed, J.L., and Palsson, B.O. (2004). Genome-scalemodels of mi-

crobial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol.

2, 886–897.

Quax, T.E., Wolf, Y.I., Koehorst, J.J., Wurtzel, O., van der Oost, R., Ran, W.,

Blombach, F., Makarova, K.S., Brouns, S.J., Forster, A.C., et al. (2013). Differ-

ential translation tunes uneven production of operon-encoded proteins. Cell

Rep. 4, 938–944.

Rigel, N.W., Ricci, D.P., and Silhavy, T.J. (2013). Conformation-specific label-

ing of BamA and suppressor analysis suggest a cyclic mechanism for b-barrel

assembly in Escherichia coli. Proc. Natl. Acad. Sci. USA 110, 5151–5156.

Russell, J.B., and Cook, G.M. (1995). Energetics of bacterial growth: balance

of anabolic and catabolic reactions. Microbiol. Rev. 59, 48–62.

Salis, H.M., Mirsky, E.A., and Voigt, C.A. (2009). Automated design of synthetic

ribosome binding sites to control protein expression. Nat. Biotechnol. 27,

946–950.

Savageau, M.A. (1977). Design of molecular control mechanisms and the

demand for gene expression. Proc. Natl. Acad. Sci. USA 74, 5647–5651.

Schomburg, I., Chang, A., and Schomburg, D. (2002). BRENDA, enzyme data

and metabolic information. Nucleic Acids Res. 30, 47–49.



Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M., and Sauer, U. (2012).

Multidimensional optimality of microbial metabolism. Science 336, 601–604.
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Selbach, M., Schwanhäusser, B., Thierfelder, N., Fang, Z., Khanin, R., and

Rajewsky, N. (2008). Widespread changes in protein synthesis induced by

microRNAs. Nature 455, 58–63.

Shapiro, A.L., Scharff, M.D., Maizel, J.V., and Uhr, J.W. (1966). Synthesis of

excess light chains of gamma globulin by rabbit lymph node cells. Nature

211, 243–245.

Shemorry, A., Hwang, C.S., and Varshavsky, A. (2013). Control of protein

quality and stoichiometries by N-terminal acetylation and the N-end rule

pathway. Mol. Cell 50, 540–551.

Shinar, G., Dekel, E., Tlusty, T., and Alon, U. (2006). Rules for biological regu-

lation based on error minimization. Proc. Natl. Acad. Sci. USA 103, 3999–4004.

Shinar, G., Milo, R., Martı́nez, M.R., and Alon, U. (2007). Input output robust-

ness in simple bacterial signaling systems. Proc. Natl. Acad. Sci. USA 104,

19931–19935.
Springer, M., Weissman, J.S., and Kirschner, M.W. (2010). A general lack of

compensation for gene dosage in yeast. Mol. Syst. Biol. 6, 368.

Stern-Ginossar, N., Weisburd, B., Michalski, A., Le, V.T., Hein, M.Y., Huang,

S.X., Ma, M., Shen, B., Qian, S.B., Hengel, H., et al. (2012). Decoding human

cytomegalovirus. Science 338, 1088–1093.

Swain, P.S. (2004). Efficient attenuation of stochasticity in gene expression

through post-transcriptional control. J. Mol. Biol. 344, 965–976.

Torres, E.M.,Williams, B.R., and Amon, A. (2008). Aneuploidy: cells losing their

balance. Genetics 179, 737–746.

Tyedmers, J., Mogk, A., andBukau, B. (2010). Cellular strategies for controlling

protein aggregation. Nat. Rev. Mol. Cell Biol. 11, 777–788.

von Dassow, G., Meir, E., Munro, E.M., and Odell, G.M. (2000). The segment

polarity network is a robust developmental module. Nature 406, 188–192.

von Hippel, P.H. (2007). From ‘‘simple’’ DNA-protein interactions to the macro-

molecular machines of gene expression. Annu. Rev. Biophys. Biomol. Struct.

36, 79–105.

Winter, R.B., Berg, O.G., and von Hippel, P.H. (1981). Diffusion-driven mech-

anisms of protein translocation on nucleic acids. 3. The Escherichia coli

lac repressor—operator interaction: kinetic measurements and conclusions.

Biochemistry 20, 6961–6977.

Yamaguchi, Y., Park, J.H., and Inouye, M. (2011). Toxin-antitoxin systems in

bacteria and archaea. Annu. Rev. Genet. 45, 61–79.

You, C., Okano, H., Hui, S., Zhang, Z., Kim, M., Gunderson, C.W., Wang, Y.P.,

Lenz, P., Yan, D., and Hwa, T. (2013). Coordination of bacterial proteome with

metabolism by cyclic AMP signalling. Nature 500, 301–306.
Cell 157, 624–635, April 24, 2014 ª2014 Elsevier Inc. 635


	Quantifying Absolute Protein Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources
	Introduction
	Results
	Genome-wide Measurement of Absolute Protein Synthesis Rates and Protein Copy Numbers
	Proportional Synthesis of Multiprotein Complexes
	Evidence for Proportional Synthesis in Budding Yeast
	Hierarchical Expression of Functional Modules
	Bacterial Proteome Composition
	Copy Numbers of TFs Reveal Their Mode of Action
	Precise Control of Enzyme Production Required for Met Biosynthesis

	Discussion
	Experimental Procedures
	Ribosome Profiling
	Analysis for Absolute Synthesis Rates
	Model for Cost and Benefit of MetE

	Accession Numbers
	Supplemental Information
	Acknowledgments
	References


