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Growth is a fundamental process of life. Growth requirements are well-characterized experimen-
tally formanymicrobes; however, we lack a unifiedmodel for cellular growth. Such amodelmust be
predictive of events at the molecular scale and capable of explaining the high-level behavior of the
cell as a whole. Here, we construct an ME-Model for Escherichia coli—a genome-scale model that
seamlessly integrates metabolic and gene product expression pathways. The model computes
B80% of the functional proteome (by mass), which is used by the cell to support growth under a
given condition. Metabolism and gene expression are interdependent processes that affect and
constrain each other.We formalize these constraints and apply the principle of growth optimization
to enable the accurate prediction of multi-scale phenotypes, ranging from coarse-grained (growth
rate, nutrient uptake, by-product secretion) to fine-grained (metabolic fluxes, gene expression
levels). Our results unify many existing principles developed to describe bacterial growth.
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Introduction

The genotype–phenotype relationship is fundamental to
biology. Historically, and still for most phenotypic traits, this
relationship is described through qualitative arguments based
on observations or through statistical correlations. Under-
standing the genotype–phenotype relationship demands van-
tage points at multiple scales, ranging from the molecular to
the cellular. Reductionist approaches to biology have produced
‘parts lists’, and successfully identified key concepts (e.g.,
central dogma) and specific chemical interactions and
transformations (e.g., metabolic reactions) fundamental to
life. However, reductionist viewpoints, by definition, do not
provide a coherent understanding of whole cell functions.
For this reason, modeling whole biological systems (or
subsystems) has received increased attention.
A number of modeling approaches have been developed to

predict systems-level phenotypes. What distinguish these
models from each other are the underlying assumptions they
make, the input data they require, and the scope and precision
of their predictions (Selinger et al, 2003). The type of modeling
formalism employed is influenced by all of these distinguish-
ing characteristics (Machado et al, 2011). Genome-scale
optimality models of metabolism (termed as M-Models) have
made much progress in recent years as they require only basic
knowledge of reaction stoichiometry, are genome-scale in

scope, and have fairly accurate predictive power. Recently,
M-Models have been extended to include the process of gene
expression (termed as ME-Models) (Lerman et al, 2012; Thiele
et al, 2012), opening up completely new vistas in the
development of microbial systems biology. On the heels of
these developments, a whole-cell model (WCM) of the human
pathogen Mycoplasma genitalium appeared (Karr et al, 2012).
The WCM integrates many more cellular processes and can be
used to simulate dynamic cellular states; however, it depends
on detailed molecular measurements of an initial state (e.g.,
growth rate, biomass composition, and gene expression).
While the model described by Karr et al is a major advance
toward whole-cell computation, many practical applications
rely on the ability to compute optimal phenotypic states. The
WCM does not have this ability owing to the disparate
mathematical formalisms it employs. The WCM and gen-
ome-scale optimality models thus have different capabilities
and will find use to predict and explain different biological
phenomena.
Here, we construct an ME-Model for E. coli K-12 MG1655.

The ME-Model is a microbial growth model that computes the
optimal cellular state for growth in a given steady-state
environment. It takes as input the availability of nutrients to
the cell and produces experimentally testable predictions for:
(1) the cell’s maximum growth rate (m*) in the specified
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environment, (2) substrate uptake/by-product secretion rates
at m*, (3) metabolic fluxes at m*, and (4) gene product
expression levels at m*. The creation of this model required the
development of a new modeling formalism and optimization
procedure to couple gene expression with metabolism, which
provided new insight into growth rate- and nutrient limitation-
dependent changes in enzymatic efficiency. The model
predicts three distinct regions of microbial growth, defined
by the factors (nutrient and/or proteome) limiting growth. We
show that proteomic constraints improve predictions of
metabolism itself, rectifying dominant failure modes in
M-Models. Finally, we compute gene expression changes as
the cell transitions through and between the different growth
regions. The ME-Model computes measurable coarse- and
fine-grained cellular and molecular phenotypes, and provides
unity in the field by reconciling a variety of principles related to
cellular growth at various scales of complexity.

Results

Integration of genome-scale reaction networks of
protein synthesis and metabolism

To create an ME-Model for E. coli, we started from two
previous network reconstructions. The first reaction network
includes all known metabolic pathways as of late 2011 (Orth
et al, 2011) and is referred to as the M-Model throughout. The
second accounts for reactions that describe gene expression
and the synthesis of functional macromolecules in a mechan-
istically detailed manner (Thiele et al, 2009). The two reaction
networks were integrated (see Materials and methods),
and reactions and gene functions in both networks were
updated to reflect gaps in knowledge that have been filled
since their creation. We updated subunit stoichiometries for
hundreds of multiprotein complexes and expanded the types
of prosthetic groups, cofactors, and post-translational
modifications required for catalytic activity (Materials and
methods; Supplementary Table S1).
The scope and coverage of cellular processes in the

integrated network is extensive. The integrated network
mechanistically links the functions of 1541 unique protein-
coding open reading frames (ORFs) and 109 RNA genes; it thus
accounts for B35% of the 4420 protein-coding ORFs, B65%
of the functionally well-annotated ORFs (Riley et al, 2006), and
53.7% of the non-coding RNA genes identified in E. coli K-12
(Keseler et al, 2013). In total, 1295 unique functional protein
complexes are produced. Taken together, these complexes
account for 80–90% of E. coli’s expressed proteome by mass
(Supplementary Table S2).

The integrated reaction network covers and accurately
predicts a large proportion of essential cellular functions.
It includes 223 of the 302 (73.8%) genes classified as
essential for cell growth under any condition (Kato and
Hashimoto, 2007) (Supplementary Table S3A), and 166 of the
206 functions (80.6%) estimated as essential for a minimal
organism (Gil et al, 2004) (Supplementary Table S3B).
In silico prediction of gene essentiality in glucose
M9 minimal media results in an accuracy of 88.8%
(precision¼ 60.4%, recall¼ 75%, Supplementary Table S4).
One of the dominant failure modes of essentiality predictions
is due to the assumption that all tRNA and rRNAmodifications
are essential; removing these genes from predictions increases
performance notably (accuracy¼ 92.3%, precision¼ 75.3%,
recall¼ 75%, Supplementary Table S4). This accuracy
is on par with previous approaches using the metabolic
reaction network alone (accuracy¼ 91.2%, precision¼ 81%,
recall¼ 68%) (Orth et al, 2011). Many of the key differences
between the M-Model and the ME-Model essentiality predic-
tions are due to the mechanistic treatment of cofactor and
prosthetic group synthesis and utilization in the ME-Model.
Specifically, for a protein complex to be functional in the ME-
Model it has to contain the embedded prosthetic groups
required for function; while this change in model structure
results in some false predictions of essentiality compared with
M-Models (which include all prosthetic groups in a biomass
objective function that does not change across conditions), the
essentiality predictions in theME-Model can be directly related
to the essential enzymes requiring the prosthetic group.

Growth demands and general constraints on
molecular catalysis

To compute functional states of the integrated network, growth
demands are first imposed. Growth requires the replication of
the organism’s genome and synthesis of a new cell wall to
contain the replicated DNA. In the ME-Model, growth rate-
dependent DNA and cell wall demand functions formalize
these requirements (Figure 1A; Supplementary information).
We derived these demand functions from growth rate-
dependent trends in cell size (Donachie and Robinson, 1987)
and DNA content (Meyenburg and Hansen, 1987; Bremer and
Dennis, 1996) (Supplementary information). In addition, as in
previous models, we imposed growth-associated and non-
growth-associated ATP utilization demands (Pirt, 1965) as the
ostensible energy requirements (Neijssel et al, 1996; Zhuang
et al, 2011).
One large improvement is that RNA and protein are not

included as demand functions (as they are in M-Models; Feist

Figure 1 Growth demands and coupling constraints leading to growth rate-dependent changes in enzyme and ribosome efficiency. (A) Three growth rate-dependent
demand functions derived from empirical observations determine the basic requirements for cell replication (detailed in Supplementary information). (B) Coupling
constraints link gene expression to metabolism through the dependence of reaction fluxes on enzyme concentrations. (C, D) RNA:protein ratio predicted by the ME-
Model with two different coupling constraint scenarios, one for variable translation rate versus growth rate (red lines) and one for constant translation rate (orange lines).
Experimental data in (C) obtained from Scott et al (2010). (E) Phosphotransferase system (PTS) transient activity following a glucose pulse in a glucose-limited
chemostat culture (red) and glucose uptake before the glucose pulse (blue) is plotted as a function of growth rate. The data shown were obtained from O’Brien et al
(1980)). Data from m40.7 h� 1 were omitted. (F) Data from (E) are used to plot glucose uptake as a fraction of PTS activity. The resulting value is the fractional enzyme
saturation (black line). The fractional enzyme saturation predicted by the ME-Model is plotted as a function of growth rate under carbon limitation (red dots). (G) The
cartoon depicts changes in extra- (blue) and intra- (green) cellular substrate (circle) and product (triangle) concentrations and metabolic enzyme (orange) and ribosome
(purple/maroon) levels as the concentration of a growth-limiting nutrient (and growth rate) increases. The dials show keff/kcat, the effective catalytic rate over the
maximum for metabolic enzymes (orange) and ribosomes (purple/maroon).
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and Palsson, 2010); instead, expression of specific RNA and
protein molecules are free variables determined during ME-
Model simulations. ‘Coupling constraints’ (Thiele et al, 2010;

Lerman et al, 2012) relate the synthesis of RNA- and protein-
based molecules to their catalytic functions in the cell
(Figure 1B). The coupling constraints are based on parameters
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that define the effective catalytic rate (keff) and degradation
rate constant (kdeg) of molecular machines (Supplementary
information).
A nutritional environment is then defined by setting

constraints on the availability and uptake of nutrients. For a
particular nutritional environment, there is a maximum
growth rate at which the cell can no longer produce enough
RNA and protein machinery to meet the demands of growth.
The computed cellular state (biomass composition, substrate
uptake and by-product secretion, metabolic flux, and gene
expression) at this maximum growth rate is the predicted
optimal response of the cell to the specified nutritional
environment.

Derivation of constraints on molecular catalytic
rates

Previous studies disagree as to if ribosomes translate with the
same efficiency (amino acids per ribosome per second) across
growth conditions (Young and Bremer, 1976; Scott et al, 2010).
Here, we use the ME-Model and available data to determine an
appropriate constraint for ribosomal efficiency as a function of
growth rate. We find that if a constant translation rate of 20
amino acids per second is imposed as a constraint in the ME-
Model, the model predicts a linear growth rate-dependent
RNA-to-protein ratio (Figure 1C), consistent with the previous
measurements (Scott et al, 2010); however, the predicted RNA
content does not quantitatively match measured values. In
particular, a constant translation rate results in no RNA
production in the limit of no growth. We therefore hypo-
thesized that ribosomal translation rate systematically varies
with growth rate, and back-calculated a growth rate-depen-
dent translation rate using measured growth rate-dependent
RNA content (Supplementary information). Ultimately, we
recovered a Michaelis–Menten-type rate law (Figure 1D) with
a maximal rate (Vmax) of B20 amino acids per second,
consistent with previous findings for maximal ribosomal
speed (Bremer and Dennis, 1996); the rate law results in a
quantitative match of RNA content compared with experi-
mental data (Figure 1C, Pearson’s r¼ 0.96). This rate law
causes translation efficiency to increase under nutrient-richer
conditions, which recent experimental evidence supports
(Proshkin et al, 2010; Valgepea et al, 2013). Interestingly,
when we applied the same Michaelis–Menten-type equations
to constrain tRNA and mRNA catalytic rates, we recovered

maximal turnover rates highly consistent with previous
estimates (Supplementary information).
The catalytic rates of metabolic enzymes are variable as

well, and tend to decrease when nutrients are limited. Both
metabolomics (Boer et al, 2010) and proteomics (Valgepea
et al, 2013) data sets suggest a large-scale scaling of enzyme
efficiencies under nutrient limitation. We approximate these
changes in metabolic catalysis in the ME-Model with two
minimal assumptions: (1) when the cell is nutrient-limited,
protein content is maximized (at a given growth rate) and
(2) this protein content specifically is metabolic enzymes not
operating at their maximal catalytic rate (Valgepea et al,
2013) (i.e., keff/kcato1, see Figure 1G and Supplementary
information, Optimization procedure). These two assump-
tions allow us to predict average catalytic rates of metabolic
enzymes under nutrient limitation. The nutrient limitation-
dependent shape of our computed catalytic rates matches
assays for glucose transporters under glucose limitation
(O’Brien et al, 1980) (Figures 1E and F), LacZ under lactose
limitation (Smith and Dean, 1972) (Supplementary
Figure S1A), and the enzyme efficiency in a small-scale
optimality model accounting for substrate concentrations
with Michaelis–Menten kinetics (Molenaar et al, 2009)
(Supplementary Figure S1B). However, because the current
ME-Model simulation procedure assumes that keff decreases
uniformly across metabolism, the model does not capture the
importance of specific enzymes for particular nutrient limita-
tions; recent data sets (Valgepea et al, 2013) and kineticmodels
(Kim et al, 2012) can help us understand and model these
trends better at the genome-scale.

Growth regions under varying nutrient availability

Upon derivation of the growth demands and molecular
efficiencies, we investigate high-level model behavior to
variable nutrient availability. Unlike previous genome-scale
models (Orth et al, 2011; Thiele et al, 2012), growth rate in the
ME-Model is a non-linear function of the substrate uptake rate
bound (Figure 2A), and eventually reaches a maximum. This
behavior is consistent with long-standing empirical models of
microbial growth (Monod, 1949; Koch, 1997), inwhich growth
is first nutrient-limited, but then limited by some intra-
organismal bound.
Under nutrient-excess conditions, growth in the ME-Model

is limited by internal constraints on protein production

Figure 2 Predicted growth, yield, and secretion. (A) Predicted growth rate is plotted as a function of the glucose uptake rate bound imposed in glucose minimal media.
Three regions of growth are labeled Strictly Nutrient-Limited (SNL), Janusian, and Batch (i.e., excess of substrate) based on the dominant active constraints (nutrient
and/or proteome limitation). The proteome-activity constraint inherent in the ME-Model results in a maximal growth rate and substrate uptake rate. The behavior of a
genome-scale metabolic model (M-Model) is depicted with an arrow. (B) Predicted growth rates as a function of uptake of a limiting nutrient with glucose in excess. The
shaded regions correspond to those as labeled in (A). (C) Experimental (triangle) and ME-Model-predicted (circle) acetate secretion in Nitrogen- (blue) and Carbon- (red)
limited glucose minimal medium are plotted as a function of growth rate. Data were obtained from Zhuang et al (2011). The root-mean-square error (RMSE) between
data and the ME-Model is 0.12 (for comparison, RMSE¼ 0.40 for the M-Model). (D) Experimental (triangle) and ME-Model-predicted (circle) carbon yield (gDW
Biomass/g Glucose) in Carbon- (red) and Nitrogen- (blue) limited glucose minimal medium are plotted as a function of growth rate. Data were obtained from Zhuang et al
(2011). RMSE between data and the ME-Model is 0.04 (for comparison, RMSE¼ 0.07 for the M-Model). (E) The cartoon depicts changes in extra- (blue) and intra-
(green) cellular substrate (circle) and product (triangle) concentrations and metabolic enzyme (blue/orange) and ribosome (purple/maroon) levels during the Janusian
region. Metabolic enzymes are saturated throughout the entire Janusian region. To increase the growth rate, the cell expresses metabolic pathways that have lower
operating costs. (Pathways with the smaller blue proteins taken to be 0.25 the cost of the pathways with larger orange proteins.) A higher glucose uptake and turnover
results, but energy yield is lower and some carbon is ‘wasted’ and secreted (brown triangles). The dials show keff/kcat, the effective catalytic rate over the maximum for
metabolic enzymes (blue/orange) and ribosomes (purple/maroon).
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and catalysis—the cell is ‘proteome-limited’—resulting in a
corresponding maximal growth rate (Figure 2A). This
feature allows Batch culture growth to be simulated without
specifying nutrient uptake bounds; instead, the ME-Model
predicts a maximum batch growth rate and optimal substrate
uptake rate.

Supporting the validity of the proteomic constraints limiting
growth in Batch culture, optimal Batch growth rates, substrate
uptake rates, and biomass yields correlate with experimental
data for growth on different carbon sources (Supplementary
Table S5). The ME-Model predicted substrate uptake and
biomass yield closely matches laboratory evolved strains
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(Pearson’s r¼ 0.89 and r¼ 0.91, respectively) (Supplementary
Table S5C, sensitivity analysis in Supplementary Table S6).
Though less accurate, predicted growth rates by the ME-Model
correlate with measured growth rates in batch culture better
than standard M-Models, in which growth rate is maximized
subject to a specified nutrient uptake, and the correlation
increases when compared with laboratory evolved strains (M-
Model Pearson’s r¼ 0.49, ME-Model Pearson’s r¼ 0.61) as
opposed to wild-type strains (M-Model Pearson’s r¼ 0.30, ME-
Model Pearson’s r¼ 0.39). Other methods that include various
approximate constraints on the total flux through the meta-
bolic network also show an increased performance in growth
rate prediction, though all computational methods (Beg et al,
2007; Adadi et al, 2012) still correlate better with each other
than with the experimental data (Supplementary Table S5B).
When the uptake of glucose is restricted below the amount

required for optimal growth in batch culture, the cell’s growth
is carbon-limited. Growth rate linearly increases with glucose
uptake when glucose availability is low. In this region (termed
as the Strictly Nutrient-Limited (SNL) region in Figure 2A), the
capabilities of the proteome are not fully utilized as the
proteome could process more incoming glucose if it was
available (Figures 1E–G). By varying the glucose availability,
we find that a region exists in which the cell is both nutrient-
and proteome- limited; we refer to this transition region as the
Janusian region (Button, 1991). ME-Model computations thus
reveal three distinct regions of microbial growth (Figure 2A;
see Supplementary information, Optimization procedure,
Computational definition, and identification of growth
regions).
When the uptake of non-carbon sources is restricted below

the amount required for optimal growth in batch culture, the
cell’s growth is limited by that nutrient. Unlike carbon-source
limitation, we find the nutrient- and proteome-limited regions
to be distinct (Figure 2B). However, in the SNL region, growth
is sometimes non-linear as a function of uptake rate, due to
changing biomass requirements (e.g., Sulfur andMagnesium).

Effect of proteome limitation on secretion
phenotypes

To understand the proteome-limited growth regions in the ME-
Model, we first investigate trends in secretion phenotypes and
biomass yield. Under glucose limitation, different metabolic
pathways are utilized in the Janusian region than in the SNL
region, resulting in acetate secretion (Figure 2C, red). This
metabolic switch, combined with growth rate-dependent ATP
requirements, results in a concave biomass yield as a function
of growth rate (Figure 2D, red). Both the biomass yield and
secretion trends have repeatedly been experimentally
observed (Zhuang et al, 2011).
The example of glucose limitation provides an illustrative

example for the general behavior in the Janusian growth
region. In the Janusian region, the cell increases its growth rate
through differential expression of pathways, as illustrated in
Figure 2E. Due to proteome limitations, the cell switches to
pathways that require less protein mass but are lower in
nutrient yield (defined as energy and/or biomass precursors
produced per molecule of limiting nutrient consumed). This

behavior is in contrast to that in the SNL region, in which high-
yield pathways are optimal (as in M-Models) and growth rate
increases through changes in the effective catalytic rate of
metabolic enzymes (Figure 1G). These results provide further
support that ‘overflow’ metabolism can be understood in
terms of proteomic constraints, as suggestedwith a small-scale
model (Molenaar et al, 2009).
The ME-Model also predicts that acetate will be secreted at

all growth rates when E. coli is Nitrogen (Ammonium)-limited
(Figure 2C, blue). Experimentally, acetate is secreted under
nitrogen limitation even at low growth rates (Hua et al, 2004).
This secretion phenotype is explained by the ME-Model as
follows: protein ‘saved’ by utilizing low-yield carbon metabo-
lism is diverted to synthesize other enzymes that are not
operating at their maximal catalytic capacity.
No Janusian region is observed under non-carbon limita-

tion. In the ME-Model, this is likely due to reaction network
topology—while there are many alternative pathways for
energy, redox, and biomass precursor generation in carbon
metabolism, non-carbon nutrient assimilation is often
achieved using more linear pathways. As a result, there are
fewer opportunities for trade-offs between uptake rate and
biomass yield. However, perhaps including variable substrate
affinities for alternative pathways would reveal Janusian
regions corresponding to non-carbon limitations.

Central carbon fluxes reflect growth optimization
subject to catalytic constraints

Further supporting the importance of proteomic constraints on
metabolic phenotypes is the prediction of central carbon fluxes
by the ME-Model. When glucose availability is varied, the ME-
Model predicts changes in central carbon metabolism con-
sistent with the changes from 13C fluxomic data sets (Figure 3;
Supplementary Figure S2, Pearson’s r¼ 0.93, 0.90, 0.86)
(Nanchen et al, 2006; Schuetz et al, 2007, 2012). Importantly,
theME-Model predicts the dominant changes in pathway splits
as the glucose availability is varied (Figure 3, insets).
Previous studies have evaluated the ability of M-Models

together with assumed optimality principles to predict meta-
bolic fluxes (Schuetz et al, 2007, 2012). These studies
concluded that no single objective function applied to
M-Models can accurately represent fluxomic data from all
environmental conditions studied (Schuetz et al, 2007).
Instead, metabolic fluxes can be understood as being Pareto
optimal: multiple objectives are simultaneously optimized and
their relative importance varies depending on the environ-
mental condition (Schuetz et al, 2012). The three objectives
needed to explain most of the variations in the data from
Schuetz et al were (1) maximum ATP yield, (2) maximum
biomass yield, and (3) minimum sum of absolute fluxes
(which is a proxy for minimum enzyme investment). These
three objectives formed a Pareto optimal surface that was
valuable for interpreting fluxomic data; however, the surface
was large and it was not possible to predict the importance of
each of the objectives a priori.
By explicitly accounting for variable growth demands,

enzyme expression, and constraints on enzymatic activity,
the ME-Model eliminates the need for multiple objectives;
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growth rate optimization alone is sufficient to predict the
fluxes through central carbon metabolism (Figure 3;
Supplementary Figure S2; Supplementary Table S7). The
three original objectives chosen by Schuetz et al are
biologically meaningful dimensions and required for inter-
preting fluxomic data when using an M-Model. In contrast,
the ME-Model accounts for all three of these dimensions
implicitly during growth rate maximization without adjusting
any model parameters (see Supplementary information and
Supplementary Table S7). Accordingly, ME-Models can deter-
mine, at least qualitatively, the importance and weighting of
the objectives for growth in a given environment. Ultimately,
the primary changes in flux through central carbon meta-
bolism can be understood as responses to the same con-
straints causing the observed relationship in biomass yield
(Figure 2D): at low growth rates under carbon limitation, the
dominant changes are due to a changing ATP demand, and in
the transition from carbon-limited to carbon-excess (pro-
teome-limited) conditions, the primary changes are due to the
switch to lower yield carbon catabolism (Figure 3, insets).

In silico gene expression profiling from
nutrient-limited to batch growth conditions

We now use the ME-Model to predict groups of proteins that
change in expression under various degrees of glucose
limitation. Under glucose limitation, the optimal proteome
changes due to shifting growth demands and proteomic
constraints. The groups of functionally related proteins that
shift in our simulations match those previously reported
experimentally (Vemuri et al, 2006; Nahku et al, 2010), but the
model predictions of quantitative differential expression (at
the level of single genes) are weak. We separate the analysis of

the SNL region (Figure 4; Supplementary Table S8A) from the
Janusian region (Figure 5; Supplementary Table S8B), due to
the different dominant constraints and phenotypic responses
specific to each region.
In the SNL region, the expression of most proteins decreases

as growth rate increases (Figure 4B, left side of tree,
Supplementary Figure S3). The largest group of proteins
includes those responsible for amino-acid and cell wall
synthesis; the growth rate-dependent decrease in expression
of these proteins is due to the combined effects of a decrease in
cell wall and protein biomass (g/gDW) and an increase in the
effective catalytic rate of enzymes (Figures 1E–G). Proteins
involved in energy metabolism also decrease in expression
with increasing growth rate due to changes in catalytic rate and
growth rate-dependent demands. Surprisingly, the predicted
expression levels of several accessory transcription proteins,
including four stress-associated sigma factors (RpoS, RpoH,
RpoE, and RpoN), are elevated at very low growth rates,
reflecting an association with metabolic proteins needed for
slow growth.
A smaller number of proteins show increases in their

relative expression levels at higher growth rates (Figure 4B,
right side of tree, Supplementary Figure S3). These proteins
include those responsible for protein synthesis (ribosome,
RNAP, and accessory proteins such as elongation factors) and
proteins involved in RNA biosynthesis. The increase in
expression of RNA biosynthetic machinery is necessary for
de novo synthesis of ribonucleotides and to ensure
flux through nucleotide salvage pathways (mainly to
support an increase in rRNA biomass). Finally, the expression
profile of the pentose phosphate pathway reflects the inter-
play between the increasing demand for ribonucleotide
precursors and the decreasing demand for amino-acid
precursors.
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To validate our predicted expression changes, we
compared gene clusters with expression data from E. coli
grown at 0.3 h� 1 andB0.5 h� 1 in a glucose-limited chemostat
(Nahku et al, 2010). In this data set, genes in Energy
Metabolism (purple), Core Expression Machinery (orange),
and RNA Biosynthesis (red) all significantly change in the
predicted direction (Wilcoxon signed-rank test, Po1�10� 4),
supporting our predicted expression profiles. The other
clusters showed no significant changes in the data set;
these clusters are either small in size or do not change
monotonically, hindering direct comparison with this
data set. The ME-Model is not yet predictive of quantitative
gene expression changes (at the level of single genes);
the correlation over the entire data set is statistically

significant (Po0.005), but weak (Pearson’s r¼ 0.14). Our
approach is at present limited to qualitative predictions of
the direction of change of small groups of functionally related
proteins.
In the Janusian region of growth (Figure 5), the cell

transitions from carbon-limited to proteome-limited con-
straints, resulting in a distinct transcriptional response. At
the beginning of this transition, the cell has reached a nutrient
level where enzymes are saturated (Figure 1G); as growth rate
increases, the total demand of anabolic processes increases,
causing a global increase in the bulk of metabolism and gene
expression machinery (Figure 5B). To meet these proteome
demands, energy metabolism is altered to favor lower yield
catabolic pathways that require less protein (so that the
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protein can instead be used for anabolic processes); this is
accomplished through a decrease in TCA Cycle and Oxidative
Phosphorylation expression in favor of a transient increase
in the Glyoxylate Cycle followed by a large increase in
Glycolysis and acetate secretion (Figures 5B and C), consistent
with previously observed changes in gene expression in
the transition to glucose-excess environments (Vemuri et al,
2006).
The ME-Model predicts intricate expression changes as

glucose availability changes by employing relatively simple
constraints on molecular catalysis and biomass composition.
This study is the first to attempt genome-scale prediction of
gene expression levels under changing growth rate and/or
nutrient limitation from optimality principles alone. Syste-
matic consideration of transcriptional regulation and inclusion
of missing constraints and parameters impacting optimality
(e.g., kinetic constraints and parameters) are future endeavors

necessary to extend the predictive power to the level of single
genes (see Discussion).

Discussion

The ME-Model is a microbial growth model that computes the
optimal cellular state for growth in a given steady-state
environment. It takes as input the availability of nutrients to
the cell and produces experimentally testable predictions for:
(1) the cell’s maximum growth rate (m*) in the specified
environment, (2) substrate uptake/by-product secretion rates
at m*, (3) metabolic fluxes at m*, and (4) gene product
expression levels at m*.
Important to the predictions of the ME-Model is the proper

coupling between metabolism and gene product expression.
Through comparison of model simulations with experimental
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data, we derived two general classes of molecular efficiencies
that vary based on the growth rate and the degree of nutrient
limitation. For ribosomes (and tRNA and mRNA), we propose
a growth rate-dependent Michaelis–Menten-type model for
polymerization speed, which has preliminary experimental
evidence (Proshkin et al, 2010), though we have not seen it
previously proposed. We furthermore show that two simple
assumptions allow us to approximate the effect of nutrient
limitation on metabolic enzyme catalysis. While enzyme-
specific trends in catalytic rates depend on the limiting nutrient
(Bennett et al, 2009; Boer et al, 2010), our formulation is a first
step toward modeling genome-scale effects of nutrient limita-
tion and suggests that simple principles may underlie these
trends. Both of these molecular efficiency variables are
essential for genome-scale modeling of gene expression and
warrant future studies to validate and refine them further.
Paired proteomic and metabolomic data sets under nutrient-
limited conditions will allow for a deeper understanding of
nutrient limitation-dependent effective catalytic rates, and
new data sets (Li et al, 2012) and models (Tuller et al, 2010) on
the processes of gene expression can help to refine model
parameters and determine their genome-scale effects.
The proteomic constraints inherent to the ME-Model result

in qualitatively different growth predictions compared with
previous genome-scale models. In the ME-Model, growth rate
is not a simple linear function of substrate uptake bounds;
instead, the ME-Model predicts a maximal growth rate and
optimal substrate uptake rates, which better reflects empirical
growth models and better predicts experimentally measured
growth rates and substrate uptake rates. The ME-Model
reveals three distinct growth regions, which we term SNL,
Janusian, and Batch; while nutrient-limited (chemostat
culture) and nutrient-excess (batch culture) conditions are
commonplace, the Janusian region (where the cell is limited by
both nutrient availability and proteome capacity) is rarely
considered in microbiology. Interestingly, we observe the
Janusian region to occur under carbon limitation but not under
various non-carbon limitations. We take this to mean that
Janusian regions may exist for non-carbon limitations, but the
constraints that may cause them to arise are outside the scope
of the current ME-Model.
The proteomic constraints in the ME-Model also improve

predictions of by-product secretion and metabolic flux under
both nutrient-excess and nutrient-limited conditions. By
accounting for the metabolic cost of proteins and limitations
of protein production capacity, the ME-Model accurately
decouples substrate uptake, growth rate, and growth yield,
allowing for important rate-yield trade-offs to be predicted. In
particular, we show that seemingly inefficient metabolism in
batch culture and under nitrogen limitation (both when
carbon is in excess), can be explained and predicted through
proteomic trade-offs. This capability rectifies the dominant
failure mode in predicting metabolic flux previously reported
for M-Models (Schuetz et al, 2012), and suggests that a single
objective of growth rate (if the proper constraints are included)
may be able to predict metabolic fluxes. This result shows that
proteomic constraints are necessary to accurately predict
metabolic responses—optimal growth and metabolic pheno-
types cannot be fully understood without taking gene
expression into account. From a practical standpoint, the

natural parsimony present in ME-Model simulations (Lerman
et al, 2012) strongly reduces the optimal solution space,
allowing for more precise predictions, an important feature in
diverse applications. The effect of proteomic constraints on
secretion phenotypes is of particular importance for applica-
tions in systems metabolic engineering, and will be necessary
for simulating behavior in complex media and predicting
nutrient preferences.
At the level of gene expression, the ME-Model predicts

detailed behavior in each growth region. In the SNL and
Janusian growth regions, gene modules have distinct nutrient
limitation-dependent profiles. A number of the gene modules
change in the correctly predicted direction compared with
expression data from E. coli in a chemostat at different growth
rates (Vemuri et al, 2006; Nahku et al, 2010), supporting our
predicted expression profiles. By predicting optimal gene
expression profiles, the ME-Model aids in understanding the
factors shaping the evolution of gene expression patterns (e.g.,
proteomic constraints and changing biomass composition).
Modeling optimal transcriptional responses is complemen-

tary to the elucidation and modeling of specific regulatory
mechanisms (Klumpp et al, 2009; Cho et al, 2011;
Berthoumieux et al, 2013). It is tempting to relate the
expression profiles predicted by the ME-Model to molecular
mechanisms underlying the control gene expression in vivo
(Klumpp et al, 2009; Berthoumieux et al, 2013; Gerosa et al,
2013). For example, constitutively expressed genes display
growth rate-dependent expression trends (Klumpp and Hwa,
2008; Klumpp et al, 2009), which might provide the cell with
an economical way of responding to global changes in
metabolic efficiency (Valgepea et al, 2013). Also, PurR could
be responsible for regulating the increase in expression of
nucleotide biosynthesis genes at higher growth rates (as PurR
is an autorepressor, this could be accomplished through
mechanisms described in Klumpp et al, 2009). Finally, though
the primary role of ArcA is to respond oxygen availability (Cho
et al, 2006), it also represses many of the genes in the TCA
cycle and Oxidative Phosphorylation that decrease during
the glucose-limited to glucose-excess (Janusian) transition
(Vemuri et al, 2006; Haverkorn van Rijsewijk et al, 2011).
However, as regulatory mechanisms are not explicitly con-
sidered in the ME-Model, the relation between regulatory
mechanisms and simulated expression profiles is indirect;
while this comparison can assist in explaining and expanding
upon the functional roles of cellular regulators, much further
work is required to validate the resulting hypotheses.
As it is an optimality model, the ME-Model is particularly

suited for studies related to adaptive laboratory evolution
(ALE). Recently, it was reported that it is not possible to predict
some changes that occur during ALE in Batch culture using an
M-Model (Harcombe et al, 2013). This is because M-Models
only take biomass yield optimization into account; these
results are consistent with the rate-yield trade-offs present in
the ME-Model under nutrient-excess conditions. In the ME-
Model, a number of inherent factors can limit cellular growth
(e.g., translation rate and metabolic catalysis); the ME-Model
can thus provide alternative hypotheses for themechanisms of
growth increase and aid in understanding the results of ALE.
The ME-Model can simulate coarse- to fine-grained cellular

and molecular phenotypes with an improved accuracy and
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scope compared with previous genome-scale models. The ME-
Model shows complex behavior as a result of linear constraints
applied to an integrated network. The ME-Model thus shows
that intricate and seemingly unintuitive phenotypes can be
modeled at a genome-scale with simple enough assumptions
to understand their underlying cause. Due to the richness of
themodel simulations, we primarily focused on E. coli growing
in glucose minimal media at different growth rates by
modulating the availability of glucose; there are therefore
many future opportunities to investigate model predictions
under many environmental and genetic conditions.
A whole-cell E. coli model has been desired for some time

(Crick, 1973) as such a model would have profound impacts
for basic microbiology, the study of microbial communities,
antibiotic discovery, the elucidation of regulatory networks,
and systems metabolic engineering. We hope the ME-Model
will serve as a scaffold for continued model development
toward these practical applications.

Materials and methods

Network reconstruction

The two primary reaction networks used to create the ME-Model were
the most recent metabolic reconstruction (Orth et al, 2011), and a
network detailing the reactions of gene expression and functional
enzyme synthesis (Thiele et al, 2009). The gene expression recon-
struction is formalized as a set of ‘template reactions’ that can be
applied to different components (e.g., gene, peptide, and set of peptides)
to generate balanced reactions. Merging the E. coli metabolic network
reconstruction with the gene expression reconstruction required a
conversion of the Boolean Gene-Protein-Reaction associations (GPRs)
into protein complexes. We utilized EcoCyc’s annotation to map gene
sets to functional enzyme complexes. The content of the final
reconstruction is detailed in Supplementary Tables S1, S9, and S10.

Coupling constraint formulation and imposition

Coupling constraints provide a mechanism for linking the flux values
of one ormore reactions in theME-Model. For example, theywere used
to bound the number of proteins that may be translated from anmRNA
before the mRNA decays or is transmitted to a daughter cell. They are
also the mechanism throughwhich we related enzyme abundance and
activity. Often, the coupling constraints are a function of the
organism’s growth rate (m). The coupling constraints are a set of
inequality constraints appended to the stoichiometric matrix as
additional rows. Assumptions and literature citations for all para-
meters used can be found in Supplementary information.

Optimization procedure

As the demand reactions and coupling constraints are functions of the
organism’s growth rate (m), growth-rate optimization is not a linear
program (LP) as in metabolic models, which rely on a linear biomass
objective function. Instead, to optimize for growth rate, we solve a
sequence of LPs to search for the maximum growth rate, m*, that still
results in a feasible LP. This search for m* is accomplished through a
binary search; the search procedure is slightly different depending on
whether the cell is proteome-limited (Janusian and Batch growth
modes) or SNL. Detailed traces of the execution of the optimization
procedures can be found in Supplementary information.

Hierarchical clustering

For Figure 4B, relative fractional proteome mass was calculated for
each gene–enzyme pair. If a gene is present in multiple enzyme

complexes, then it is represented twice, and all subunits of an enzyme
complex are counted separately. To filter out the stochastic expression
of alternative isozymes (to make the observed trends clear), we
eliminated gene–enzyme pairs that were not expressed across all
growth rates and filtered gene–enzyme pairs that changed in relative
expression by 40.3 across more than one pair of consecutive growth
rates. Hierarchical clustering was performed on the resulting expres-
sion profiles; we used a signed power (b¼ 6) correlation similarity (as
in Langfelder and Horvath, 2008) and average agglomeration.

File formats and accessibility

The model is freely available as part of the openCOBRA Project
(http://opencobra.sourceforge.net).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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