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Messenger RNA molecules are tightly regulated, mostly through
interactions with proteins and other RNAs, but the mechanisms that
confer the specificity of such interactions are poorly understood. It is
clear, however, that this specificity is determined by both the nucle-
otide sequence and secondary structure of the mRNA. Here, we
develop RNApromo, an efficient computational tool for identifying
structural elements within mRNAs that are involved in specifying
posttranscriptional regulations. By analyzing experimental data on
mRNA decay rates, we identify common structural elements in fast-
decaying and slow-decaying mRNAs and link them with binding
preferences of several RNA binding proteins. We also predict struc-
tural elements in sets of mRNAs with common subcellular localization
in mouse neurons and fly embryos. Finally, by analyzing pre-
microRNA stem–loops, we identify structural differences between
pre-microRNAs of animals and plants, which provide insights into the
mechanism of microRNA biogenesis. Together, our results reveal
unexplored layers of posttranscriptional regulations in groups of
RNAs and are therefore an important step toward a better under-
standing of the regulatory information conveyed within RNA mole-
cules. Our new RNA motif discovery tool is available online.

bioinformatics � motif prediction � posttranscriptional regulation �
RNA secondary structure � SCFGs

RNA molecules undergo diverse posttranscriptional regulation
of gene expression, including regulation of RNA transport and

localization, mRNA translation, and RNA decay (1–3). In many
cases, such posttranscriptional regulation occurs through elements
on the mRNA molecule that interact with the hundreds of RNA
binding proteins (RBPs) that exist in the cell (4). A well-known
example is the iron-responsive element (IRE), a secondary struc-
ture RNA motif located on UTRs of members of the iron metab-
olism and transport pathway (5). The binding of the RBPs Irp1 and
Irp2 to IRE elements affects the translation rate of the mRNA, and
by that coordinates the response to changing levels of iron in the
environment. Other examples include a 118-nucleotide stem–loop
structure through which mRNAs are transported to the yeast bud
tip by the RBP She2 (6) and the RBP Sbp2 that is involved in
mediating UGA redefinition from a stop codon to selenocysteine
by binding specific stem–loop structures, termed selenocystein
insertion site (SECIS) elements, in the 3� UTR of selenoproteins
(7). In other cases, elements on the mRNA molecule interact with
other RNAs that direct the regulatory effect. For example, the
recognition and binding affinity of a microRNA to its mRNA target
is determined by both the sequence and structure of the target
mRNA (8–11).

The examples above suggest that the posttranscriptional regula-
tion of mRNAs is determined not only by its linear nucleotide
sequence but also by its secondary structure. Thus, a key goal is to
understand the involvement of mRNA secondary structures in such
regulation. One approach is to identify recurring patterns, termed
motifs. However, linear sequence motifs, which are commonly
found in DNA sequences, are not suitable in this case. Instead, we
wish to identify motifs that combine primary and secondary struc-
tural elements and are therefore better suited to describe functional
elements in RNA molecules.

Here we develop RNApromo (RNA prediction of motifs), a new
computational method to identify short structural RNA motifs in
sets of long unaligned RNAs. Using our method, we identify
putative motifs in sets of mRNAs with substantial experimental
evidence for a common posttranscriptional regulation, and we
support these findings with cross-validation analysis. In some cases,
sequence conservation of the putative motifs provides strong
independent support for our findings. The identified motifs include
motifs for mRNAs with similar decay rates, mRNAs that are bound
by the same RBP, and mRNAs with a common cellular localization.
Additionally, analysis of pre-microRNA structures identified dif-
ferences between animals and plants in the sizes of stem and loop
structures of pre-microRNAs, suggesting that animals and plants
use different mechanisms for microRNA biogenesis.

Results and Discussion
A New Computational Scheme for RNA Motif Discovery. Several tools
exist for finding local structural motifs in a set of long input RNAs.
Many existing works use free energy minimization considerations
for predicting local motifs, by applying one of three major schemes:
use of a sequence-based local alignment to build a motif consensus
structure (12, 13); identification of common structures in the RNAs’
predicted minimal free energy folds (14–16); or simultaneous
alignment of the RNAs and prediction of their secondary structure
(17–20). Recently, some graph theoretical techniques were also
proposed for this task (21, 22). Yet some of the most successful
approaches for motif discovery are based on advanced probabilistic
models, which are highly suitable to capture the observed variation
in the input set.

Stochastic context-free grammars (SCFGs) are a class of prob-
abilistic models proposed for modeling common sequence and
structure in a set of input RNAs (23, 24), which replaced the
thermodynamic considerations in several existing RNA motif dis-
covery tools (25, 26). However, currently available SCFG applica-
tions optimize the model’s parameters by essentially considering all
possible secondary structures of the input sequences. This approach
is successful mainly when it is possible to exploit covariation
between organisms to infer the secondary structure at the motif
position. However, when one wishes to identify short motifs, using
data from a single organism, covariation data cannot be used.
Moreover, enumerating all possible secondary structures results in
a rather high time complexity of the algorithm, making it unfeasible
to scan large RNA sets or long RNA sequences.

Here, we devised a new SCFG-based method for finding local
motifs in a set of unaligned RNAs, which restricts the search space
to a predefined and limited number of structures for each input
RNA. Yet which structures should be considered by the algorithm?
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Ideally, experimental information about RNA structure can be
used, and only the few structures that are consistent with such
structural data are considered. Even though such experimental
structural information currently exists for only a small number of
cases, such information may soon be available. Alternatively, using
existing thermodynamic-based secondary structure prediction pro-
grams (14, 27) (with �50%–90% prediction accuracy [28]) for
predicting a small set of thermodynamically stable folds and re-
stricting the algorithm to those, allows both reduction of the search
space and integration of thermodynamic considerations into our
model, which are not fully embedded into standard covariance
model applications. Certainly, other structure prediction tools, such
as those based on probabilistic models (29), can also be used to
derive a set of highly probable folds as an input to our method.

Our algorithm, called RNApromo, takes as input a set of RNA
sequences assumed to share a motif, and their suggested secondary
structures. The algorithm first identifies specific and relatively short
candidate structures that appear in as many inputs as possible.
These candidates are then used as seeds for a probabilistic inference
algorithm that refines the predicted motif using statistical estima-
tion (see supporting information (SI) for a full description).

To examine the performance of RNApromo, we first tested its
ability to identify known RNA structural motifs in a large collection
of validation sets from the Rfam database (30). We used a fivefold
cross-validation scheme, in which we partition the input set into five
parts, learn a model from each of the possible combinations of four
sets, and use this model to assign likelihood scores to the RNAs that
were held out while learning it. We use the standard receiver
operating characteristic (ROC) curve and its associated area under
the curve (AUC) measure to evaluate the significance of the input
RNAs’ likelihood scores compared with shuffled sequences. We
filtered each set to include only sequences with �90% sequence
similarity, because high sequence similarity may produce high AUC
scores even when a functional motif is not present. The maximal
sequence similarity in our validation sets ranges from 30% to 90%
(see SI for details). Although high AUC scores indicate that the
input RNAs share a biological signal, we still have to validate that
this signal results from a common motif. To test that, we applied the
same motif discovery scheme to a collection of random sets that

include randomly selected sequences from all of the validation sets.
Because we do not expect to identify motifs in these random sets,
their AUC scores should be close to 0.5, indicating that in the
absence of a common motif in the input set, no signal is detected.

The results (Fig. 1A) show that whereas the AUC scores of the
random sets are indeed distributed around 0.5, with only 5% of
the scores above 0.6, more than 60% of the AUC scores of the
true sets are above 0.6. This indicates that in most cases,
RNApromo indeed detects the biological signal when it is
present, yet it rarely detects such a signal if there is no common
motif in the input RNAs. Similar results were obtained using a
different method to predict the structure of the input RNAs (29)
(see SI).

Repeating the same analysis with other available tools (26)
shows that RNApromo is compatible with these tools in terms of
results but requires shorter running times (see SI). This result is
notable, given that the Rfam database includes motif instances
from several organisms, and in such a setting, tools that exploit
covariation information have an advantage over RNApromo.

Next, we tested our method’s ability to identify and correctly
describe known biological motifs when covariation data is minimal.
We analyzed three well-known motifs from human: histone-fold
domain (HFD), iron-responsive element (IRE), and seleno-cystein
insertion site (SECIS), each sharing a different level of sequence
similarity. Although three examples cannot provide global statistics,
they can still allow a better evaluation of our method’s abilities in
such a setting.

Using RNApromo, we detected a motif in all three sets (Fig. 1B):
HFD (AUC � 0.95, P � 5 � 10�16), IRE (AUC � 0.86, P � 7 �
10�4), and SECIS (AUC � 0.59, P � 0.05). The predicted con-
sensus structures are highly similar to those described in the
literature and usually match the known motif positions (94% of the
HFD instances, 60% of the IRE instances, and 47% of the SECIS
instances). In the misclassified cases, the motif position was not
folded into the correct structure by the prediction algorithm. Note
that the SECIS consensus structure includes two noncanonical G-A
base pairs, which standard folding algorithms cannot predict.
Nonetheless, RNApromo identifies a motif in this set and predicts
its structure quite accurately. The predicted SECIS motif obviously
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Fig. 1. Validation of motif discovery scheme. (A) Distribution of AUC scores for motifs in the true (dark blue) vs. permuted (light blue) sets (using ViennaRNA predicted
folds). AUC scores of permuted sets are distributed around 0.5, whereas AUC for motif-containing sets are usually higher. (B) Prediction of three known human motifs:
HFD (Top), IRE (Middle), and SECIS (Bottom). Motifs are represented using a structural logo of the motif’s most probable structure. Specific positions are color coded
accordingtotheirprobability (green-to-redscaleforsequence,andgrayscaleforstructure).Shownis thepredictedmotif logoandtheknownconsensusstructure (Left),
with several examples of correctly classified motifs (Right). The motif position is annotated in green, and the 5� end of the motif is circled. The FTH1 UTR (in the IRE part),
which was misfolded at the IRE loop, is shown in red. Sequence conservation profile (average across all of the motif instances) is also shown (Rightmost Column).
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does not include the noncanonical base pairs, yet the sequence
specificity of these positions is detected. In two cases, the sequence
conservation at the motif positions is also remarkably high: HFD
(P � 5 � 10�16) and IRE (P � 2 � 10�4). In the third case, the
conservation signal is relatively weak, demonstrating that structural
motifs are not always associated with high sequence conservation.

Repeating the analysis of those three sets using CMfinder (26)
results in the identification of only two of the three motifs (the
SECIS motif is not identified). Moreover, the HFD consensus
includes only a 5-bp (rather than 6-bp) stem (see SI). Because the
comparison is done only on three sets, we cannot draw definite
conclusions but only suggest that in the absence of covariation data,
RNApromo may be better suited to predict RNA structural motifs.

Taken together, these examples demonstrate the ability of
RNApromo to correctly identify and characterize the right
(short) RNA motif from an input of (long) unaligned RNAs,
including both its structure and sequence elements, without any
prior knowledge of its length, location, or structure, and in the
presence of noise in the folding input. Importantly, RNApromo
also performs well with minimal covariation information and
therefore can be used to predict motifs for a single organism.

Motifs Involved in Modulating mRNA Decay Rates. Having validated
that our computational scheme can detect known biological motifs,
we used it to predict novel motifs. We applied RNApromo to 3� and
5� UTR sequences of several sets of genes for which substantial
evidence suggests that they share common posttranscriptional
regulation.

We first filtered these sets to include only sequences with �90%
sequence similarity. Using a similar cross-validation scheme, we
then assigned an AUC score to each set and evaluated its statistical
significance relative to a background distribution. For sets with
significant AUC scores, we also build a model of the motif. As

independent support for our findings, we evaluate the statistical
significance of the average sequence conservation at the predicted
motif positions. Because the learning process itself is done on
mRNAs from a single organism, no evolutionary information is
used during the training process. Therefore, a significant level of
conservation provides an independent biological signal that further
supports the findings and suggests that the motif that was identified
in one organism could be functional in additional organisms.
However, motifs with low sequence conservation may still be
functional, either because they are conserved at the structure level
rather than the sequence level or because they are specific to the
tested organism.

Recently, genome-wide decay rates of yeast mRNAs were mea-
sured (3), but the investigators were unable to detect any significant
relationships between the measured mRNA half-lives and codon
usage, ORF lengths, or primary sequence motifs. It is therefore
possible that mRNAs with similar decay rates exhibit a common
motif through which their costability is controlled. To test this
hypothesis, we created sets of genes with similar decay rates and
applied our motif discovery scheme to them.

Intriguingly, we identify a motif in 3� UTRs of 75 mRNAs with
a measured short half-life of �6 min (AUC � 0.61, P � 10�3). The
predicted motif sequence is AU rich and folds into a stem–loop
structure with a relatively short loop (Fig. 2A). Furthermore, this
motif shows a high conservation profile (P � 5 � 10�3), as an
independent support for its biological relevance. We also identify a
motif in the 3� UTRs of 240 mRNAs with a measured long half-life
of �60 min (AUC � 0.59, P � 8 � 10�4). Once again, the motif
sequence is AU rich, yet the structural context is different and includes
a large unstructured U-rich loop followed by a short stem (Fig. 2B).

The role of AU-rich elements located on the 3� UTR of mRNAs
in modulating mRNA stability, both as stabilizing and destabilizing
elements, has long been known (31). Our results suggest that the
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structural context within which these sequence elements are em-
bedded determines their activity: a small loop will induce destabi-
lization, whereas a long U-rich loop will stabilize the mRNA.

Many studies have shown that much of the posttranscriptional
regulation of mRNAs in the cell occurs through their interactions
with the hundreds of different cellular RBPs. It is therefore possible
that the motifs we identified in the fast- and slow-decaying mRNAs
are bound by specific proteins that modulate mRNA stability. In an
attempt to identify such proteins, we selected several available sets
of genome-wide measurements of mRNAs bound by the same RBP
and tried to identify common motifs in them.

Proteins from the Puf family of RBPs have been reported to bind
UGUR motifs located in the 3� UTR of their targets and thereby
repress gene expression by affecting mRNA stability and translation
rate. A recent study in yeast (32) measured the set of RNAs bound
by five RBPs from the Puf family, resulting in groups of 40–220
bound mRNAs per protein. By applying a DNA motif discovery
tool to the 3� UTR primary sequence of the mRNAs bound by each
Puf protein, the investigators were able to identify distinct 10-
nucleotide RNA sequence motifs containing the UGUR element in
mRNAs interacting with Puf3, Puf4, and Puf5. Applying
RNApromo to the targets of each of the five Puf proteins, we
identify a significant motif in the 3� UTRs of Puf3 (AUC � 0.57,
P � 2 � 10�3), Puf4 (AUC � 0.58, P � 8 � 10�5), and Puf5
(AUC � 0.59, P � 4 � 10�5) targets. The three motifs are
somewhat similar (Fig. 2C) and include an AU-rich sequence that
is folded into a stem–loop structure with a relatively short loop. For
the Puf5 motif, we find a significant level of sequence conservation
(P � 10�4), as an independent support for the predicted motif.
Moreover, the Puf5 consensus structure includes the UGU ele-
ment, which is part of the previously proposed Puf5 sequence motif
(in 63% of the predicted Puf5 target sites).

The yeast polyU binding protein, Pub1, an embryonic lethal
abnormal visual (ELAV)-like RBP with mammalian homologues,
is known to play key roles in cellular mRNA decay. Pub1 was shown
to bind with high affinity different target mRNAs with AU-rich
sequences in their 3� UTR and stabilize them (33). In a recent study,
a genome-wide measurement of Pub1 targets identified 368 target
transcripts. Applying RNApromo to the 3� UTRs of Pub1 targets,
we predict a significant motif (AUC � 0.6, P � 2 � 10�5), which
is also highly conserved (P � 5 � 10�10). The predicted motif is AU
rich and folds into a stem–loop structure that includes a long and
highly U-rich loop (Fig. 2C).

Looking at the motifs we predict for these RBPs, we notice their
similarity to the mRNA decay motifs: in targets of Pub1, a protein
that is known to stabilize its targets, we identify a very similar motif
to the slow-decay motif, whereas in targets of the Puf proteins,
which were suggested to increase mRNA degradation rates, we
identify a motif with a similar structure to the fast-decay motif.
Indeed, fast-decaying mRNAs (half-life �6 min) are enriched with
Puf proteins targets (P � 8 � 10�16), whereas slow-decaying
mRNAs (half-life �40 min) are enriched for Pub1 targets (P � 2 �
10�3). Moreover, looking at the decay rates of the top 20% of
targets of each protein (scored by the predicted motifs), we see (Fig.
2C) that the half-lives of the Puf targets are lower (18 � 13 min on
average) than the Pub1 targets (28 � 32 min on average).

Finally, Sam68 is a human RBP involved in cell growth
regulation, which was shown to bind to AU-rich motifs within a
stem–loop context (34). Analyzing its eight known targets, we
predict a stem–loop motif (AUC � 0.73, P � 2 � 10�3). On the
basis of the previous observations and the structure of this motif,
we can hypothesize that Sam68 promotes the degradation of its
mRNA targets. If true, this would indicate that this destabiliza-
tion motif is conserved between human and yeast.

Overall, our results suggest a role for mRNA secondary
structure in controlling mRNA stability. The detailed secondary
structure of the well known AU-rich elements may play a
significant role in determining their function as stabilizing or

destabilizing elements. By binding different RBPs, AU-rich
elements with different structure can change the mRNA stability
and therefore affect its translation rates.

Motifs Involved in mRNA Localization. RNA transport and local
translation have now been documented in vertebrates, inverte-
brates, and unicellular organisms, enabling cells to control gene
expression at small localized regions. Several studies suggest that
cellular localization of mRNAs is specified by RNA motifs on the
localized mRNA and bound by RBPs involved in trafficking (5).
The RBPs involved in several localization processes were identified
experimentally and shown to interact with elements composed of
both sequence and structure (6). We thus applied our motif
discovery scheme to several sets of mRNAs that share similar
localization patterns.

Recently, a large study on mRNA localization during fly embry-
onic development was performed (35). This study provides a large
set of colocalized mRNA transcripts, both to specific parts of the
embryo and to distinct cellular compartments. Although some of
the mechanisms for mRNA localization during development are
known and involve morphogen gradients that induce local tran-
scription of mRNA, these are not active at the subcellular level or
for maternal mRNAs. Therefore, it is possible that some of the
documented localization events are a result of signals on the mRNA
itself. Applying RNApromo to the 94 sets of colocalized mRNAs,
we detect significant motifs in nine sets of colocalized maternal and
embryonic transcripts (Fig. 3A). Interestingly, whereas mRNA
stability motifs are located on 3� UTRs, most predicted localization
motifs are located on the 5� UTR of the transcripts.

Of the nine predicted motifs, five (56%) are identified in sets of
maternal transcripts with a common cellular localization, although
such sets constitute only 7% of the localization patterns (P � 5 �
10�5). One interesting example is the motif predicted in maternal
transcripts localized to the spindle midzone, the central area of the
spindle where microtubules from opposite poles overlap. This
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localization pattern is evident during developmental stages 4 to 5 (at
the beginning of blastoderm cellularization), and it is possible that
these maternal transcripts are involved in early cellularization
processes in the embryo. Quite surprisingly, very similar motifs were
independently identified in both 3� and 5� UTRs of these tran-
scripts, suggesting that they both function in the same localization
event.

Because only posttranscriptional mechanisms can induce em-
bryonic localization of maternal mRNAs, we can also expect to
identify common RNA motifs in maternal mRNAs with similar
embryonic localization patterns. Indeed, we identified a motif in
apically localized maternal transcripts, providing a possible
mechanism for the localization of maternal transcripts to distinct
embryonic locations.

Finally, we identified motifs in three sets of zygotic transcripts
that localize to unique subsets of the blastodermal nuclei. One motif
also shows a significant sequence conservation profile. Because it is
less likely that RNA motifs are involved in localization of transcripts
to specific parts of the embryo, especially after cellularization
processes begin, we hypothesize that these motifs are involved in
other posttranscriptional regulations, whereas the expression in
specific groups of blastoderm cells can be determined by another
mechanism.

We also predicted motifs for other (non-embryonic) mRNA
localization events. mRNA localization is particularly important in
neurons, where the plastic modulation of synaptic connections
requires local changes of gene expression. Indeed, we predict a
motif in 97 dendrite-localized mRNAs that were recently identified
experimentally in mouse hippocampal neurons (AUC � 0.61, P �
2 � 10�5) (36), suggesting that it may be involved in the localization
of these transcripts to dendrites (Fig. 3B).

Overall, we were able to predict motifs in several sets of
mRNAs that are localized to similar cellular compartments, both
in fly embryos and mouse neurons. These results demonstrate
the potential use for mRNA structural motifs in producing local
mRNA concentration in the cell, which may be beneficial for the
local translation of proteins.

Target Recognition by the Pre-microRNA Processing Machinery. Mi-
croRNAs are a class of small (21–24 nucleotides) noncoding RNAs

that play a significant role in regulating gene expression and mRNA
stability (37). Mature microRNAs are produced from endogenous
transcripts (pri-microRNAs) with a stem–loop structure. During
microRNA biogenesis, the Drosha RNase recognizes these tran-
scripts and cleaves them to produce the pre-microRNA stem–loops.
The pre-microRNA is further processed into a mature microRNA
through a second cleavage event by the Dicer family of RNases. It
is known that Drosha recognizes its targets by their stem–loop
structure, and several elements of this structure were demonstrated
to be particularly important for this recognition (38), yet the exact
features are still unclear. To produce a more accurate model of this
structural motif, we applied RNApromo to pre-microRNAs of
different organisms. We expect this collection to represent the
preferences of the pre-microRNA recognition mechanism.

The identified motifs take, as expected, the shape of a stem loop
with almost no bulges or internal loops, and with relatively weak
sequence signals (Fig. 4A). This does not mean that the pre-
microRNA structures do not contain bulges (in fact they usually
do), but rather that there is no tendency across the different
pre-microRNA structures for a bulge in a specific position. Yet the
pre-microRNAs consensus structures of different organisms are
not identical and can be divided into two groups on the basis of two
key features: the stem length and the loop length. Intriguingly, this
division matches two distinct groups of organisms: animals (meta-
zoa) and plants (Fig. 4A). Plant pre-microRNAs have a small loop
(5.6 bases on average) and a long stem (average 38.1 bp), whereas
animal pre-microRNAs usually have a longer loop (average 10.9
bases) and shorter stem (average 32.8 bp). Another evident differ-
ence between animals and plants pre-microRNA is their overall
length, which is much higher in plants (average 160 bases) than in
animals (average 88 bases). Finally, consistent with the fact that
viruses are known to use the host cell machinery to process their
microRNAs (39), the stem size of animal viruses’ pre-microRNAs
is closer to that of animals (average 9.4 bases). No data for plant
viruses were available for comparison.

The Drosha enzyme is active inside the nucleus, where many
other transcripts besides those of pri-microRNAs are produced.
Assuming it recognizes and cleaves only pri-microRNA stems, we
would expect pri-microRNA stems to have specific structural
features, distinguishing them from stem–loop structures that appear
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in other genomic transcripts. To test this hypothesis, we applied
RNApromo to stem–loops that appear in arbitrary genomic tran-
scripts. Strikingly, we find that in plants, the length of the stem and
loop of arbitrary stem–loop-containing transcripts is very similar to
the lengths of the plant pri-microRNAs, whereas in animals,
stem–loops of arbitrary transcripts and stem–loops of animal
pri-microRNAs have markedly different lengths. Thus, our results
suggest that in animals, the nuclear RNase Drosha recognizes and
cleaves its pri-microRNA targets, perhaps by measuring the length
of their loop, among other features. Longer loops, which are
characteristic of pri-microRNAs, enable the enzyme to specifically
recognize these transcripts. These results further suggest that in
plants, Drosha recognition is not part of the microRNA biogenesis
process, and thus a different mechanism may exist.

These intriguing results are supported by the observation that
although in animals cleavage by Drosha is essential for pre-
microRNA export to the cytoplasm and further processing by
Dicer, most Dicer homologues in plants are already localized to the
nucleus (37). Moreover, the existing literature provides no evidence
of a plant Drosha homologue and no evidence for accumulation of
pre-microRNAs after a Dicer knockout in plants (40). Thus, it is
possible that plant pri-microRNAs, in a similar way to siRNAs
precursors, are directly recognized and cleaved by Dicer. Indeed,
plant pre-microRNAs have long stems that are similar to the long
dsRNA precursors that generate siRNAs, and the mature
microRNAs, like mature siRNAs, usually induce degradation of
their targets rather than a translational arrest.

Conclusions
In summary, we have developed and applied a novel computa-
tional tool, RNApromo, that identifies short RNA motifs from
the full-length RNA regions in which they are embedded. Unlike

other available tools, RNApromo restricts the motif search to a
predefined set of input structures, which allows it to perform well
even on sets of mRNAs from a single organism, reduces the time
complexity, and allows the use of thermodynamic-based meth-
ods for predicting RNA secondary structure.

Using RNApromo, we predict two structurally different and
AU-rich motifs in 3� UTRs of fast-decaying and slow-decaying
mRNAs and identify proteins that may bind these motifs and
modulate the stability of the bound mRNAs. Although the involve-
ment of AU-rich elements in this process is known (31), our analysis
reveals the importance of the structural context in which these
elements are embedded. Next, we predict motifs in sets of colocal-
ized transcripts in mouse neurons and fly embryos, which can be
involved in establishing local cellular concentrations of mRNAs.
Finally, we analyze pre-microRNA sequences and reveal that in
animals Drosha may recognize its pri-microRNA targets by mea-
suring, among other features, the length of their loop. Moreover,
our analysis suggests that plant microRNAs are processed similarly
to other siRNAs, in a mechanism that requires only the Dicer
enzyme. Overall, the predicted motifs represent novel and exper-
imentally testable findings and demonstrate the potential of
RNApromo for uncovering posttranscriptional regulatory mecha-
nisms. Our work thus represents a step toward the long-term goal
of making the genome-wide computational prediction of RNA
secondary structure elements as routine and robust as is currently
practiced for linear DNA elements, thereby revealing some of the
mechanisms by which RNA molecules are regulated within the cell.

Methods
See the SI for full details on our methods and on the datasets we used, as well as
for additional results. An online version and the implementation of the
RNApromo algorithm are available from the authors’ website or upon request.
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