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SUMMARY

Genes are packaged into nucleosomal arrays, each
nucleosome typically having two copies of histones
H2A, H2B, H3, and H4. Histones have distinct post-
translational modifications, variant isoforms, and dy-
namics. Whether each histone copy within a nucleo-
some has distinct properties, particularly in relation
to the direction of transcription, is unknown. Here
we use chromatin immunoprecipitation-exonuclease
(ChIP-exo) to resolve the organization of individual
histones on a genomic scale. We detect widespread
subnucleosomal structures in dynamic chromatin,
including what appear to be half-nucleosomes con-
sisting of one copy of each histone. We also detect
interactions of H3 tails with linker DNA between nu-
cleosomes, which may be negatively regulated by
methylation of H3K36. Histone variant H2A.Z is en-
riched on the promoter-distal half of the +1 nucleo-
some, whereas H2BK123 ubiquitylation and H3K9
acetylation are enriched on the promoter-proximal
half in a transcription-linked manner. Subnucleo-
some asymmetries might serve as molecular bea-
cons that guide transcription.

INTRODUCTION

Nearly every gene in a eukaryotic nucleus is packaged into chro-

matin by an array of nucleosomes (Jiang and Pugh, 2009; Rando

and Ahmad, 2007; Segal andWidom, 2009). How these genic ar-

rays are structured in relation to transcription is only partly under-

stood. The first nucleosome in each array typically resides at a

canonical distance from the transcription start site (TSS) and at

the edge of a 50 nucleosome-free promoter region (NFR). A sub-

set of quiescent genes, typically regulated by the SAGA com-

plex, may have nucleosomes over their promoters that are lost

or depleted upon gene activation. The +1 nucleosome is the

gateway to transcription as it is the first nucleosome encoun-

tered by the transcription machinery. Arrays continue into gene

bodies, having nucleosome repeat lengths (NRLs) of �165 bp
in budding yeast. This regularity dissipates toward the middle

of genes.

In the wake of DNA replication, nucleosomes are assembled

by chaperones. They first escort dimers of histones H3/H4 into

tetramer intermediates on �60 bp of DNA; these tetramer in-

termediates are then rapidly flanked by two sets of H2A/H2B

dimers that together wrap �147 bp of DNA �1.65 times

around the octamer core (Luger et al., 2012). This basic two-

step assembly process has been a tenet in chromatin biology

for over 25 years (Kornberg and Lorch, 1999). However, early

studies hinted at alternative pathways that produce subnu-

cleosomal particles (Weintraub et al., 1975; Weintraub et al.,

1976). Regardless, nucleosomal and subnucleosomal struc-

tures with respect to the organization of individual histones

and their chromatin context have not been defined on a

genome-wide scale.

A nucleosome has two-fold symmetry of histone organization

and thus might have a symmetrical distribution of histones, var-

iants, and modifications about its dyad axis. However, RNA po-

lymerase II engages the NFR-proximal face of a nucleosome

differently than it engages its distal back-end, as it transcribes

a gene. Either as a cause or a consequence of an asymmetric po-

lymerase-nucleosome relationship, the levels of histones, vari-

ants, and their modificationsmight be asymmetrically distributed

within specific nucleosomes.

The chromatin immunoprecipitation-exonuclease (ChIP-exo)

assay locates formaldehyde-induced protein-DNA crosslinks

along a genome at very high resolution in vivo (Rhee and

Pugh, 2011, 2012b). Here we apply ChIP-exo to the budding

yeast four core histones, histone variant H2A.Z, the linker

histone H1, and the transcription-linked histone modifi-

cations H3K4me3, H3K36me3, H3K79me2/3, H3K9ac, and

H2BK123ub. With this, we examine nucleosome substructure

and symmetry at the �60,000 nucleosome-occupied sites in

the budding yeast genome. Our study suggests a surprising

model of intra- and internucleosomal histone interplay that

may reflect a variety of subnucleosomal structures and their dy-

namics. A substantial fraction of all genes display differential

histone occupancy on one-half of their nucleosomes versus

the other. Nucleosomes at specific positions within arrays

have an asymmetric organization of transcription-linked histone

variants and modifications. Together, these finding paint a
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Figure 1. Subnucleosomal Detection of Histones across Yeast Genes

(A) Histone occupancy (color intensity) as detected by ChIP-exo was plotted relative to +1 nucleosome dyads (‘‘Nuc,’’ defined by MNase) at annotated mRNA

genes (4,738 rows; values reported in Table S3). Rows were sorted by H3 occupancy in the linker between the +1 and +2 nucleosomes (Table S2). Histone

turnover rate in the +1 nucleosome region is from Dion et al. (2007), where yellow, black, and blue represent high, medium, and low turnover, respectively.

(B) Composite (average) plot of (A). Gray fill indicates nucleosome midpoint distribution defined by MNase (tags plotted relative to consensus).

(C) Regions of histone crosslinking projected onto the crystal structure of one half of the nucleosomal core particle (Luger et al., 1997). Colored segments of the

circle denote regions of crosslinking, centered at the indicated distance from the nucleosome dyad. Arrowhead denotes where the H3 tail emerges from between

the DNA gyres.

(D) Relationship between NRL and H3 occupancy levels between the +1 and +2 nucleosomes (Table S2). Data were plotted as a 50-nucleosome moving average

for all NRL > 145 bp (minimum size of a nucleosome). Data were not background subtracted.

See also Figure S1.
strikingly detailed and unexpected view of subnucleosomal

structure in vivo and its relationship with the direction of

transcription.

RESULTS

H3 Tails Engage Linkers
Figure 1A displays the distribution of ChIP-exo crosslinking

points (exonuclease stop sites) for each of the four core histones

around the 50 end of genes. None of the histones substantially

crosslinked in NFRs, as expected of their general nucleosome-

free status, although SAGA-regulated (Taf1-depleted) genes

tended to have higher histone occupancy in promoter regions

(data not shown). H2B and H4 each displayed two regions of

crosslinking for each nucleosome (two vertical stripes for each
1378 Cell 159, 1377–1388, December 4, 2014 ª2014 Elsevier Inc.
‘‘Nuc’’ stripe in Figure 1A and averaged in Figure 1B). Their

crosslinks corresponded to the genomic locations expected

from the crystal structure of the nucleosome core particle that

is centered on the genomic coordinates of nucleosome mid-

points (dyads), as defined by MNase digestion (Figure 1C). H4

and H2B were about 26 and 38 bp from the dyad, respectively.

H2A crosslinked broadly near linker DNA, which is consistent

with in vitro studies (Shukla et al., 2011; Usachenko et al.,

1994). This broad crosslinking represents two adjacent H2A

from two adjacent nucleosomes. Sorting arrays by the length

of the linker DNA between the +1 and +2 nucleosomes resolved

H2A into separate peaks (Figure S1 available online). For brevity,

we focused subsequent analyses on the +1 and +2 nucleosome

positions, although equivalent conclusions can be drawn at

other resolvable genic positions.
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Figure 2. Asymmetry in Histone Occupancy

(A) Heatmap of correlation coefficients (R) for all pairwise combinations of

NFR-proximal and NFR-distal histone occupancies at +1, +2, and +3 nucle-

osomes (Table S2). To simplify the patterning, correlations above 0.4 were

coded with the same red color. The types of intra- and internucleosomal

correlative interactions that the data suggest are illustrated below the

heatmap.

(B) Histone distribution relative to the +1 nucleosome of mRNA genes (4,738

rows) orientated by TSS and sorted by H4 NFR-distal versus NFR-proximal

ratios (Table S4). Rows were grouped by ribosomal protein (RP, n = 128)

genes, then by high (n = 1,381), medium (n = 1,852), and low (n = 1,377) TFIIB
Surprisingly, H3 crosslinking peaked in linker regions rather

than at nucleosome dyads where the bulk of H3 resides (Figures

1A and 1B). A minor H3 peak was detected at the dyad. In the

nucleosome crystal structure, the base of the H3 N-terminal

tail emerges from the nucleosome core near the linker DNA (Fig-

ure 1C). To experimentally test whether H3 tails were responsible

for linker crosslinking, ChIP-exo was performed in a strain where

most, but not all, of the H3 tail was deleted (D1–28) (Morgan

et al., 1991). H3-linker crosslinking was diminished in this strain

(Figures 1A and 1B), suggesting that H3 tails are in close prox-

imity to linker DNA within genic nucleosome arrays. This conclu-

sion is further supported by in vitro reconstitution experiments

(Zheng et al., 2005). The overall H3 pattern was not grossly

altered in the H3D1–28 strain (Figures 1A and 1B), indicating

that amino acids 1–28 of H3 tails lack a predominant or nonre-

dundant role in organizing nucleosomes within arrays. The re-

maining eight amino acids of the tail (residues 29–36) could

nevertheless be involved.

Remarkably, H3 crosslinks were largely absent from the edges

of NFRs adjacent to +1 nucleosomes (which might be thought of

as very long linkers; Figures 1A and 1B). When arrays were

sorted by +1/+2 linker length, H3 tail-linker crosslinking dimin-

ished at linkers > �30 bp in length (i.e., where the nucleosome

repeat length or NRL exceeds �180 bp in Figures 1D and S1).

Genes at both extremes of this linker-length distribution tended

to havemore dynamic nucleosomes and be of the Taf1-depleted

(and thus SAGA/TATA/stress-regulated) class (right-most

panels in Figure S1), which is consistent with the greater plas-

ticity and inducibility of these genes (Huisinga and Pugh, 2004;

Tirosh and Barkai, 2008). Thus, nucleosome dynamics, +1/+2

linker length, diminished H3 interactions at the +1/+2 linker,

and gene inducibility appear to be linked. This may reflect an

ability tomobilize (e.g., reposition or dissociate) a noncanonically

positioned +1 nucleosome, which would occur adjacent to long

linkers. Indeed, chromatin remodelers may access nucleosome

via adjacent long linkers (Ranjan et al., 2013).

In principle, because transcription and genic arrays have

directionality, H3 tail-linker interactions might arise predomi-

nantly from H3 in the adjacent upstream nucleosome or

H3 in the adjacent downstream nucleosome, resulting in

asymmetric substructures. Alternatively, H3 in both flanking

nucleosomes might contribute similarly. We reasoned that

H3 tail-linker occupancy levels should correlate most with

the occupancy level of the nearest neighboring nucleosome

or H4 subunit, as H3 normally interacts with H4 within a

nucleosome. H3-linker occupancy correlated similarly with

both flanking H4 occupancy levels (blue arrow in Figure 2A,
occupancy in the promoter region (Rhee and Pugh, 2012b). Also shown is the

distribution of SS (green) and WW (red) dinucleotides (IUPAC: W = A/T, S = C/

G; 4 bp bin). The right panel shows transcription frequency (Holstege et al.,

1998), where yellow, blue, and black represent high, medium, and low rates,

respectively.

(C) Composite distribution of histones separated out by themost highly versus

themost lowly occupied H3 in the +1/+2 linker (respectively shown as dark and

light colored traces, using 30th percentile cutoffs; n = 1,455 for each, derived

from Table S3). Gray ovals demarcate nucleosome intervals.

See also Figure S2.

Cell 159, 1377–1388, December 4, 2014 ª2014 Elsevier Inc. 1379



Rproximal = 0.39 versus Rdistal = 0.31) and also total flanking

nucleosomal H4 levels (i.e., both H4 copies within a flanking

nucleosome; Figures S2A–S2C). Similar trends were evident

with H3 (D1–28) (Figure S2D, Rproximal = 0.37 versus Rdistal =

0.30). We conclude that H3-linker interactions are largely

derived from both flanking nucleosomes, although the correla-

tions suggest there may be slightly more interactions arising

from the more upstream nucleosome.

Evidence for Subnucleosomal Structures
Because the histone octamer is a fundamental unit of chromatin,

we expected histone occupancies on the NFR-proximal half of a

nucleosome to correlate with histone occupancies on its NFR-

distal half. Indeed, occupancies did correlate between the two

halves (yellow boxed areas in Figure 2A, Rave = 0.22). However,

the correlations were surprisingly modest when compared to

stronger cross-correlations of the core histones located on the

same half of each nucleosome (cyan dashed areas, Rave =

0.45). Nonadjacent combinations were uncorrelated (Rave =

0.08). Although the H3 that was crosslinking in the linker was

not included in this assessment, it too behaved similarly. These

relationships were also evident in plots of individual arrays (Fig-

ure 1A) and in composite plots (see Figure 2C). In general, H4-H4

cross-nucleosomal correlations were higher than those for H2A-

H2A and H2B-H2B, which may reflect a tighter cross-nucleo-

somal linkage between H4. We interpret these correlations to

reflect differential histone occupancy (or DNA crosslinking) on

one half of a canonical genic nucleosome compared to the other,

subject to the controls and caveats described below.

Figure 2B displays the distinct histone occupancy levels on the

two halves of canonical +1 nucleosomes, where all data sets

were grouped by promoter activity (TFIIB occupancy) of the

associated gene, then sorted based on H4 distal/proximal ratios.

Thus, where H4 occupancy was higher on the NFR-distal

half of +1, the occupancy of the other histones was also higher

on that half. A reciprocal relationship existed on the NFR-prox-

imal half. These findings suggest that the histones on one half

of a genic nucleosome may be more coordinated in their DNA

occupancy than they are across the two halves of the same

nucleosome.

About 50% of all analyzed nucleosomes showed a >2-fold dif-

ferential of H2B occupancy on one half versus the other, whereas

only about 12% showed the same differential with H4. These

represent arbitrary thresholds, as there is a continuum of differ-

ential occupancy but subject to nonbiological biases in detec-

tion, which we address below. Thus, differential occupancy is

detected between two halves of a nucleosome in a substantial

number of cases. The more pronounced differential seen with

H2B suggests that additional differential occupancy may exist

between H3/H4 and H2A/H2B on the same half of a nucleosome.

The low cross-nucleosome correlations relative to the same-side

correlations at nucleosome positions +1, +2, and +3 (Figure 2A)

indicate that these relationships exist broadly across multiple

genic nucleosome positions.

SS richness (where S denotes G or C) in DNA promotes nucle-

osome assembly (Kaplan et al., 2009; Mavrich et al., 2008; Tillo

and Hughes, 2009). We therefore examined the distribution of

SS dinucleotides at +1 nucleosomes and found them to partially
1380 Cell 159, 1377–1388, December 4, 2014 ª2014 Elsevier Inc.
reflect differential proximal versus distal histone occupancy (Fig-

ure 2B). This suggests that an imbalance of SS (or GC content)

on one half of a nucleosome or the other may contribute to differ-

ential histone occupancy, much as it contributes to overall nucle-

osome occupancy. Although this also raises the question as to

whether any sequence specificity in formaldehyde crosslinking

or sample processing is responsible for the histone ChIP-exo

patterning, our analyses of this issue in Figures S3A and S3B

suggest otherwise.

In order to seek out independent evidence for differential distal

versus proximal histone occupancy, we used an assay that did

not involve formaldehyde or ChIP-exo. Nucleosome organization

has been mapped genome-wide at high precision using an engi-

neered cysteine at residue 47 in H4 to catalyze hydroxyl-radical

cleavages in DNA near nucleosome dyads (Brogaard et al.,

2012). This separates proximal from distal nucleosomal DNA.

As shown in Figure 3A, H4 distal/proximal occupancy ratios for

the +1 nucleosome, as determined by ChIP-exo, positively

correlated with levels of distal H4S47C-cleaved fragments and

negatively correlated with proximal fragments. As described in

the Extended Experimental Procedures, these correlations and

the abrupt changes in the trends at the extremes of the ratios

are predicted outcomes of differential proximal versus distal his-

tone occupancy.

We next used MNase ChIP-seq as a third independent probe

of subnucleosomal structure. MNase probes nucleosomal parti-

cles in their native state. MNase at low activity preferentially

cleaves histone-free DNA, rather than DNA within the nucleo-

some core. Because we were probing for subnucleosomal parti-

cles, we size-selected for library inserts in the 35–100 bp range,

rather than the normal range of 120–180 bp for full nucleosomes.

In this population, we detected enhanced cleavages (50 ends)
starting where H3/H4 interfaces with H2A/H2B and extending

through where the canonical dyad resides (Figure 3B, where

the bottom trace plateaus from �30 to +30 bp from the dyad).

We interpret this cleavage to reflect enhanced DNA accessibility

internal to and on one side of what otherwise would be a full

nucleosome. Enhanced cleavage at the expected nucleosome

edge (�75 bp from the dyad) was also detected with these small

fragments. Both sets of cleavages are consistent with subnu-

cleosomal structures consisting of hexasomes (nucleosomes

that lack one H2A/H2B dimer) and half-nucleosomes.

For comparison, Figure 3B also plots the distribution of sub-

nucleosomal fragments from standard high MNase digestion

(blue middle trace). This level of MNase is expected to partially

nibble in from the edges of full nucleosomes up to the junction

between H2A/H2B and H3/H4, due to the loose association

of DNA in that region. Because full nucleosomes are quite

abundant, these cleavages are expected to dominate the distri-

bution of small fragments, thereby obscuring the presence of

subnucleosomal fragments. As a control, large DNA fragments

(120–180 bp) have their predominant cleavages occurring at

the expected edges of full nucleosomes. Together these results

are consistent with MNase detecting hexasomal and half-nucle-

osomal structures.

Next, we used a fourth assay, the paired-endMNase-seq data

of Henikoff et al. (2011), to confirm our MNase experiments. This

assay did not involve formaldehyde or ChIP. As shown in
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Figure 3. Evidence for Differential Proximal versus Distal Histone Occupancy using Chemical Cleavage and MNase

(A) Evidence for differential distal versus proximal histone occupancy in H4S47C-mediated chemical cleavage data (Brogaard et al., 2012). Average levels of DNA

fragments (tag counts) released on the NFR-proximal (blue) or NFR-distal (red) side of 4,738 genic +1 nucleosomes are plotted as a function of H4 distal/proximal

occupancy ratio at +1 nucleosomes. Data were smoothed using a 500 value moving average. See Table S5 for data processing.

(B) Cleavage at canonical nucleosomal dyads using low MNase activity. Chromatin was treated with either high or low MNase activity, H3-immunoprecipitated,

then size-selected in the indicated range. The average distribution of unshifted tag 50 ends around +1 nucleosomes (n = 4,738) was orientated from left to right in

the 50 to 30 direction (regardless of strand). Note that plotting strands separately (sense versus antisense with respect to the direction of transcription) produces

essentially identical plots within the relevant +1 region, when plotted in the 50 to 30 direction (not shown). Tag counts are normalized, and thus their vertical scales

are not comparable between traces. Above each trace are illustrated interpretations of the peaks. The interpretations were constrained by the experimental

design so that properly sized fragments spanned H3 and included at least two dimer sets of histones. See Table S5 for data processing.

(C) Composite distribution of MNase cleavage sites (paired-end tag 50 ends) reported by Henikoff et al. (2011), plotted relative to the +1 and +2 nucleosome

midpoints (Table S2) of annotatedmRNA genes (n = 4,738) with respect to TSS orientation. Full nucleosome (125–165 bp, cyan/orange) and subnucleosome (65–

85 bp, blue/red) were computationally size-selected, and their occupancy (tag counts) plotted. Cyan/blue vertical lines indicate peak 50 ends on the sense strand,

and red/orange vertical lines indicate peak 50 ends on the antisense strand of paired-end reads. Data show DNA solubilized with low MNase activity (2.5 min

digestion).

See also Figure S3.
Figure 3C, cleavages were again detected in the dyad region

among the population of small DNA fragments. Based on the

mechanism by which MNase cleaves DNA, we suggest that in

these instances the DNA is lifted off of one half or quarter of

the histone core where it is accessible to MNase or alternatively
results from differential distal versus proximal histone occu-

pancy. This implies that at least some nucleosomes at the 50

end of genes (other regions not excluded) have at least one

half (demarcated by the dyad) that is intact and the other half

or quarter that is disassembled.
Cell 159, 1377–1388, December 4, 2014 ª2014 Elsevier Inc. 1381
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Figure 4. Sequence-Based Localized Nucleosome Positioning

(A) Heatmap representing all pairwise correlations (R) between NRLs and H3-

linker occupancy levels at nucleosomes +1 through +6. Cyan and red repre-

sent negative and positive correlations, respectively. Calculations were based

on nucleosomes at 3,194 genes longer than 1 kb (Table S2). NRL reports dyad-

to-dyad distances in MNase-based maps (Zhang et al., 2011b). Similar ob-

servations were made with positions determined by ChIP-exo (not shown).

(B) Occupancy levels of H3 ChIP-exo and SS/WW dinucleotide frequencies,

relative to themidpoint between the +1 and +2 nucleosomes (Table S6), sorted

by NRL between the +1 and +2 nucleosomes (Table S2).
The concept of alternative nucleosomal substructures was

first described by Weintraub et al. in 1975: ‘‘A basic unit of

chromosome structure is a tetramer containing all 4 histones’’

(Weintraub et al., 1975, 1976), where ‘‘half-nucleosomes’’ were

reconstituted in vitro with pure histones and DNA. ‘‘Unfolded’’

nucleosomes have been isolated from cells, whereby the nor-

mally inaccessible H3-H3 dyad interface was found to be

accessible to external mercury probes (Chen et al., 1991).

Other subnucleosomal structures, including hexasomes, have

been suggested (Annunziato, 2005; Black and Cleveland,

2011; Zlatanova et al., 2009). More recently, hemisomes have

been suggested for centromeric nucleosomes (Dalal et al.,

2007; Krassovsky et al., 2012) and have been reconstituted

in vitro using centromeric H3 (Cse4) and canonical H3 (Furuyama

et al., 2013). Our ChIP-exo data sets provide little insight into

centromeric nucleosome structures, in that the four core his-

tones were not detected at centromeric locations perhaps due

to inefficient crosslinking or extraction (Figure S3C). However,

adjacent, noncentromeric subnucleosomal structures were de-

tected. Partial nucleosomes appear enriched at two positions

to the right of centromeres, although full nucleosomes also

were nearby. To the left of the centromeres, full nucleosomes

predominated.

Histone Coordination between Nucleosomes
Less H3 crosslinking within the +1/+2 linker was accompanied

by a parallel decrease in flanking histone occupancy (i.e., the

NFR-distal half of +1 and NFR-proximal half of +2; Figure 2C,

also evident in Figure 1A). Histone occupancies on the two flanks

of a linker were as correlated on average as they were across two

halves of the same nucleosome (Figure 2A, white versus yellow

boxed areas, Rave. = 0.20 versus 0.22, respectively). These aver-

aged values were essentially the same at all nucleosome posi-
1382 Cell 159, 1377–1388, December 4, 2014 ª2014 Elsevier Inc.
tions, where examined (+1, +2, +3). Thus, there appears to

be coordination in histone occupancy between two halves (or

parts thereof) of adjacent nucleosomes toward a shared linker.

In a slight contrast, H4 wasmore correlated within a nucleosome

than between nucleosomes. Speculatively, this might be due

to the presence of H3/H4 tetramers in addition to other

substructures.

NRLs (distances between MNase-defined nucleosome mid-

points) anticorrelated with flanking NRLs and also anticorrelated

with underlying H3 tail-linker occupancy levels (Figures 4A and

S1). Thus, despite generally uniform positioning imposed by

chromatin remodelers (Zhang et al., 2011b), certain nucleosome

neighbors gravitate toward each other (illustrated in Figure 7,

bottom panel). Longer linkers (NRLs) arise on their other flank,

and this is coupled to histone depletion of the nucleosomal

halves that abut these long linkers. This is consistent with longer

linkers having higher histone exchange rates (Figures 1A and S1)

and diminished H3-tail interactions. Given that linker length is

measured using full nucleosomes (regardless of histone occu-

pancy), their measurement should not be influenced by histone

depletion. Remarkably, WW enrichment (where W denotes A

or T) ‘‘painted’’ the linker-length landscape (Figure 4B, WW, SS

panel). Thus, linker WW nucleotides may promote deviations

from uniform positioning established by remodelers and in doing

so enhance occupancy dynamics of adjacent histones.

H3K36me3 Negatively Regulates Linker Interactions
H3 tails are methylated (me) and acetylated (ac) in a genome-

wide location-specific manner so as to potentially regulate

nucleosomal arrays and transcription. We examined whether

H3 modifications alter H3-linker interactions by conducting

ChIP-exo after immunoprecipitation with histone modification-

specific antibodies. H3K4me3 and H3K79me2/3 were enriched

at their previously published array positions (i.e., nucleosome

positions +1, +2, +3 for H3K4me3 and at all positions for

H3K79me2/3) in a transcription-linked manner (Figures 5A–5D).

In addition, linker crosslinking patterns were consistent with ex-

pectations from MNase-based maps. Therefore, these marks

had no overt effect on H3-linker interactions.

In contrast, H3K36me3 had a markedly less coherent ChIP-

exo pattern (Figures 5A, 5B, and S4A), despite recapitulating

the known array asymmetry (i.e., depletion at the 50 end of

genes). This was surprising because MNase-based maps of

nucleosome cores having H3K36me3 display very robust array

patterning (Figure 5C) (Zhang et al., 2011c). K36 is located at

the base of the H3 tail where it emerges between the DNA gyres

of the nucleosome core (Luger et al., 1997). The diffuse pattern of

crosslinking associated with H3K36me3 suggests that although

H3K36me3 nucleosome cores are well-positioned in genic

arrays (based on MNase maps), this mark is inhibitory to H3

tail-linker crosslinking. Conceivably, K36me3 might alter the tra-

jectory of the H3 tail as it emerges from the DNA gyres, as

reported for tail mutants (Ferreira et al., 2007), or bind histone-

modifying/remodeling enzymes such as the Rpd3S histone de-

acetylase complex or the ISW1 complex (Carrozza et al., 2005;

Keogh et al., 2005) with the result of blocking H3 tail-linker inter-

actions. A more trivial explanation may be that K36me3 renders

K36 less reactive to formaldehyde, if indeed K36 is the major



point of crosslinking. To experimentally test this, we performed

ChIP-exo on H3 containing alanine instead of lysine at position

36 (K36Amutant). Thismutant H3 appeared to crosslink normally

to linker DNA (Figure S4B), indicating that K36 is not the predom-

inant H3 crosslink to linker DNA, although its methylation alters

the potential of the tail to crosslink to linkers.

We examined linker histone H1 and found its crosslinking

pattern to be almost identical to that of H3 (Figures 5A, 5B, and

5E). To test whether H1 regulates H3-linker interactions, we

deleted H1 (hho1D strain). However, we observed no effect on

H3-linker interactions (Figure 5F) nor any effects on nucleosome

organization. Thus H1 does not play a widespread or nonredun-

dant role in organizing nucleosomal arrays in Saccharomyces.

Asymmetry of H3K9ac, H2Bub, and H2A.Z
Nucleosomal arrays that encompass genes have asymmetry, as

a whole, with respect to transcription-linked histone modifica-

tions, being distinct at the 50 ends of genes compared to internal

and 30 locations (Henikoff, 2008; Rando and Ahmad, 2007). This

asymmetry is an integral part of the transcription cycle. Because

RNA polymerase II makes distinct approaches to the proximal

versus distal sides of these nucleosomes, we examined whether

this might be reflected in asymmetric deposition of histone

marks and variants. Remarkably, at highly but not lowly tran-

scribed genes, we found H3K9ac to be enriched primarily on

the NFR-proximal half of the +1 nucleosome (Figures 5B and

5G). This is the half of the +1 nucleosome where H3 crosslinking

was almost nonexistent in the general population. Indeed, a

similar transcription-linked enrichment at the NFR-proximal

side of +1 was not observed for H3 or for other transcription-

linked H3 marks. This is consistent with the notion that the

K9ac mark is transient, and that most H3 is unacetylated at

H3K9 even at highly transcribed genes. Thus, H3K9ac rather

than transcription per se may be more directly linked to H3-tail

contacts with the edge of NFRs.

H2BK123 is located within the core C-terminal a helix of H2B,

and its ubiquitylation (ub) is linked to the transcription cycle

(Batta et al., 2011; Fleming et al., 2008; Pavri et al., 2006). Like

H3K9ac, H2Bub was highly enriched on the NFR-proximal half

of the +1 nucleosome in a transcription-linked manner (Figures

5B and 5H). In light of this and the prior observation that loss

of ubiquitylation results in accumulation of RNA polymerase II

at promoters (Batta et al., 2011), we speculate that H2B ubiqui-

tylation at the NFR-proximal half of the +1 nucleosome facilitates

the movement of RNA polymerase II into gene bodies. Further

into gene bodies, crosslinking of additional H2Bub occurred in

linkers and was contributed by both flanking H2B (Figure S4C),

as seen with H3. Its basis is currently unclear, although preferen-

tial crosslinking of ubiquitylated H2B toH3 could generate such a

pattern.

The apparent nucleosome asymmetry of histone marks could

be an indirect consequence of differential histone occupancy

(Figure 6A). To address this possibility, we normalized the level

of each mark to the underlying occupancy level of the relevant

histone (e.g., H3K9ac/H3). We then calculated the log2 occu-

pancy ratio at the distal half of the +1 nucleosome to its proximal

half and plotted it as a function of H4 distal/proximal ratio.

Accordingly, H3K9ac retained its overall preference for the
NFR-proximal half of +1, as indicated by the black trace in Fig-

ure 6B being below zero and having zero slope. One caveat is

that H3 and H3K9ac on the distal half were not positionally

resolved from the proximal half of the +2 nucleosome.

When normalized to H2B, ubiquitylated H2B remained biased

toward the NFR-proximal half of the +1 nucleosome (red trace

being generally below zero in Figure 6B). In addition, it displayed

a tendency toward occupying the half that was most depleted of

histones (negative slope of the trace). These effects were accen-

tuated at highly transcribed genes (not shown). As depletion

likely reflects dynamics, we infer that higher ubiquitylation den-

sity reflects nascent histone assembly occurring on the depleted

side, which is what H2B ubiquitylation is thought to promote.

As expected, histone variant H2A.Z was highly enriched at

the +1 nucleosome position (Figures 5A and 5B) (Albert et al.,

2007) and was asymmetrically placed toward the NFR-distal

half of the +1 nucleosome (Figures 5A, 6C, and 6D). Compared

to H2A, H2A.Z was preferentially enriched where H4 was en-

riched (positive H2A.Z/H2A slope in Figure 6B), thereby linking

the presence of H2A.Z to stably occupied histones. An exception

was at long +1/+2 linkers, where the trend was reversed. This is

consistent with the SWR1/SWR-C complex requiring long DNA

to deposit H2A.Z into nucleosomes (Ranjan et al., 2013; Yen

et al., 2013). We conclude that the transcription machinery

generally encounters H2A.Z on the distal half of the +1 nucleo-

some. Such heterotypic nucleosomes are intrinsically unstable

(Bönisch and Hake, 2012) and thus might facilitate the passage

of RNA polymerase II (Weber et al., 2014).

DISCUSSION

Subnucleosomal Structures Suggest Mechanisms for
Nucleosome Dynamics
The results presented here provide insight into potential mecha-

nisms of nucleosome instability at the 50 ends of genes that

differs from the canonical view. Collectively, the data show that

histone occupancies on one half of a nucleosome dyad are

more strongly coordinated with each other than histone occu-

pancy across the two sides of the dyad (Figure 7, bottom panel).

The effect is stronger for H2A/H2B than for H3/H4, leading us to

surmise that both hexasomes (two copies of H3/H4 and one

copy of H2A/H2B) and half-nucleosomes (one copy of H2A/

H2B/H3/H4) exist in vivo, in addition to the more abundant stan-

dard nucleosomes. This observation is consistent with early

views of in vivo nucleosomes (Weintraub et al., 1975, 1976)

and with biochemical studies that reconstitute such half-nucleo-

somes on DNA (Furuyama et al., 2013). Such partial nucleo-

somes may not be present or evident in typical in vitro reconsti-

tution studies, possibly due to missing factors (e.g., chaperones

and/or DNA sequence) and/or the use of assays that are unsuit-

able for their detection in a subpopulation.

In support of the physiological importance of subnucleosomal

structures, nucleosome positions that were associated with

noncanonical linker lengths, which are linked to differential distal

versus proximal histone occupancies, had distinct properties.

They tended to have higher histone turnover andwere associated

with Taf1-depleted/SAGA-regulated genes. Differential histone

occupancy was also associated with distinctive densities of
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+ 1
tu

rn
ov

er

0 -2 +6
Median (log2)

0-400 600
Distance from the midpoint between +1 & +2 nucleosomes (bp)

0 0 0 0 0 0

In
cr

ea
si

ng
N

R
L

be
tw

ee
n

+1
/+

2

0
gene

H1H3 H2Bub H2A.Z Nuc
+1 +2 +3 +4 +1 +2 +3 +4+1 +2 +3 +4 +1 +2 +3 +4+1 +2 +3 +4 +1 +2 +3 +4 +1 +2 +3 +4 +1 +2 +3 +4 +1 +2 +3 +4 T a

f1
-D

e p
l

K79me2/3K4me3 K9acK36me3

H3 modifications
A

-1.5 0 1.5
Distance from array midpoint (kb)

RP

gene

H3 H1

ChIP-exo-based histones

R
ib

os
om

al
pr

ot
ei

n
ge

ne
s

H3K79me2/3H3K4me3 H3K9acH3K36me3 H2Bub H2A.Z mRNA h-1

-4 +7
Median (log2)

B

-1.5 0 1.5
Distance from array midpoint (kb)gene

mRNA h-1

RP

H3K79me2/3H3K4me3 H3K9acH3K36me3 H2BubH4 H2A.ZPol II

MNase-based nucleosomes

R
ib

os
om

al
pr

ot
ei

n
ge

ne
s

C

H3

Low
TFIIB

High Highly transcribed

Pol II

Low
TFIIB

High

+1 +2 +3 +4+1 +2 +3 +4

H3 (ΔH1)H3H1

Distance from +1 nucleosome dyad (bp)
-200 6002000 400

H3K79me2/3 FED H2BubH3K9acG H

+1 +2 +3+1 +2 +3 +4

H
ig

h
M

ed
iu

m
Lo

w

T F
IIB

oc
cu

pa
nc

y

H
ig

h
M

ed
iu

m
Lo

w

TF
IIB

oc
cu

pa
nc

y

(legend on next page)

1384 Cell 159, 1377–1388, December 4, 2014 ª2014 Elsevier Inc.



H2B H2BubH3 H3K9ac H2A

Distance from +1 nucleosome dyad (bp)
0-80 +80

H2A.Z Pol IIA

gene

+1+1 +1 +1 +1 +1 +1+1

H4

-1

0

1

-1 0 1
H4 (distal/proximal)

H2Bub / H2B

H3K9ac / H3

H2A.Z / H2A

+1
NFR

distal

+1
NFR

proximal

D
is

ta
l/p

ro
xi

m
al

r a
ti o

(l o
g 2)

B

80

160

0
-200 6003000

H
2A

.Z
re

ad
s

5

10

0

H
2A

re
ad

s

Distance from +1 nucleosome dyad (bp)

D

YBR039W

+1 +2 +3

40

80

0

ChIP-exo H2A.Z MNase nucleosome

Chromosome 2

316000 317000315000

60

120

0

N
uc

le
os

om
e

re
a d

s

500 bp

YBR040W

30

60

0

ChIP-exo H2A.Z
MNase nucleosome

Chromosome 10

411000 410000 409000412000

20

40

0

N
uc

le
os

om
e

re
ad

s

YJL013C

500 bp

+1 +2 +3

YJL012C

C

RP

H
ig

h
M

ed
iu

m
Lo

w

TF
IIB

oc
cu

pa
nc

y

H
2A

.Z
re

ad
s

H
2 A

.Z
re

ad
s

240

Figure 6. Asymmetric Density of Histone Marks and Variant H2A.Z
(A) Proximal versus distal occupancy of histone marks. Data were plotted as described in Figure 2B.

(B) Shown is the distal/proximal occupancy ratio of the indicated histone marks or variant at +1 nucleosomes (n = 4,738), after normalizing to (dividing by) the

relevant underlying core histone occupancy (intervals designated in Table S2). Ratios were log2 transformed, sorted by H4 distal/proximal ratio (x axis), and

smoothed using a 500-nucleosome moving average.

(C) Example of asymmetrically placed H2A.Z at the NFR-distal half of the +1 nucleosome at specific loci. Orange filled plot shows the distribution of H2A.Z-

crosslinking sites (raw sequencing tags) measured by ChIP-exo. Gray filled plot shows nucleosome midpoints detected by MNase ChIP-seq.

(D) Composite distribution H2A.Z (orange trace) and H2A (yellow trace) detected by ChIP-exo, relative to the +1 nucleosomemidpoint at all mRNA genes. Gray fill

indicates nucleosome midpoint distribution detected by MNase ChIP-seq.
histonemarks. Thus, regardless of its structural basis, differential

proximal versus distal histone occupancy is associated with

distinct functional properties compared to all other nucleosomes

at the same relative position. Differential occupancy was not

correlated with transcription frequency of the underlying mRNA
Figure 5. Subnucleosomal Organization of Histone Marks and Variants

(A) Occupancy levels of histones and their marks relative to the +1/+2 linker and s

Taf1-depleted genes (black lines) (Rhee and Pugh, 2012b) and histone turnover

et al., 2007).

(B) Same as (A) except that entire genic arrays are shown (50 to 30 from left to right).

(including an expanded vertical view), and the remaining by TFIIB occupancy (Rh

et al., 1998).

(C) Similar as (B), except measured by MNase ChIP-seq from previous studies (A

RNA polymerase II measured by ChIP-exo.

(D–H) Composite distribution of the indicated histones or marks relative to the +1 n

bottom 30% (Rhee and Pugh, 2012b). (E) and (F) are for all genes. (F) H3 in a wild-

(H) H2Bub (magenta) and Pol II (brown fill) are for genes having the top 30% of T

See also Figure S4.
gene, which indicates that it is not necessarily linked to transcrip-

tion.Whether it is linked to noncoding transcription or other types

of genomic regulation remains to be determined.

In addition to previously published works, evidence for

half-nucleosomes in this study comes from several different
orted by linker length (n = 4,738 genes; Table S7). The right panels demarcate

rate of the +1 nucleosome region (yellow indicates ‘‘hot’’ nucleosomes) (Dion

Arrays are sorted by array length and grouped by ribosomal protein (RP) genes

ee and Pugh, 2012b). The right panel shows transcription frequency (Holstege

lbert et al., 2007; Batta et al., 2011; Zhang et al., 2011a, 2011b). Pol II denotes

ucleosomemidpoint at genes having TFIIB promoter occupancy in the top and

type strain is shown as a blue fill, and H3 in an hho1D strain as a magenta trace.

FIIB occupancy.
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Figure 7. Composite Model of Nucleosomal

Arrays at Genes

The nucleosome-free promoter region (50 NFR)

is depicted with RNA polymerase II. Within arrays,

the two sides of a nucleosome are depicted

as two-toned gray disks, fused to form nucleo-

somes. In the upper panel, histonemarks, variants,

and WW/SS dinucleotide enrichment are depicted

by different colors. ‘‘K9ac,’’ ‘‘ub,’’ ‘‘K4,’’ and

‘‘36’’ denote H3K9ac, H2Bub, H3K4me3, and

H3K36me3, respectively. These features are

placed at their predominant locations within ar-

rays. The lower panel illustrates longer WW-rich

linkers (red) that are linked to histone destabiliza-

tion on the linker-flanking half of each nucleosome

(symbolized by transparency). The red arrows

indicate that those (sub)nucleosomes are closer

than normal to their adjacent nucleosomes.
assays: (1) correlated distal/proximal occupancy ratios of all

four core histones, measured by the ChIP-exo assay performed

on in vivo crosslinked chromatin; (2) differential occupancy

measured by H4S47C-based chemical cleavage of noncros-

slinked chromatin; (3) MNase cleavage at dyads of native

crosslinked chromatin; (4) MNase cleavage at dyads using

noncrosslinked chromatin and paired-end sequencing from a

different lab; and (5) an enrichment of DNA sequences (GC)

that favor nucleosome formation on the side where histone

occupancy is the highest. A number of control analyses indi-

cated that DNA sequence-based biases in either crosslinking

or DNA sequencing was not a trivial explanation for differential

occupancy. However, we cannot unequivocally rule this possi-

bility out.

Our conclusions on half-nucleosomes run counter to the

current view that nucleosome assembly/disassembly proceeds

through an H3/H4 tetramer (dimer of dimers) intermediate.

Conceivably, however, nucleosome assembly/disassembly

might proceed by multiple pathways. For example, ab initio

nucleosome reassembly in the wake of DNA or RNA polymerase

might proceed via the classical pathway of chaperone-assisted

assembly of H3/H4 tetramers (dimer of dimers) followed by

chaperone-assisted assembly of H2A/H2B dimers. However,

chromatin that is intrinsically dynamic in the absence of a pass-

ing polymerasemight exchange histones via hexasome and half-

nucleosome intermediates. In this way, a hexasome might lose

either a single H2A/H2B dimer or a single H3/H4 dimer. Chaper-

ones, chromatin remodelers, DNA/RNA polymerases, histone

variants/modifications, and the underlying DNA sequence could

influence pathway selection in response to environmental cues.

Having more dynamic nucleosomes, for example near the 5’

ends of genes, might alter accessibility to transcription factor-

binding sites or TSSs, and this includes creating alternative cod-

ing and noncoding TSSs. The class of genes that are particularly

associated with subnucleosomal structures tend to also have

abnormal +1/+2 linker lengths. These genes tend to be SAGA

regulated and TATA containing and thus subject to a wide range

of regulation.

Chromatin remodelers play a predominate role in organizing

nucleosomes into uniform arrays. However, the work presented
1386 Cell 159, 1377–1388, December 4, 2014 ª2014 Elsevier Inc.
here and elsewhere suggests that the underlying DNA

sequence may help maintain a prescribed organizational state

at certain genes that differs somewhat from the canonical

pattern that remodelers offer (Kaplan et al., 2009; Mavrich

et al., 2008; Tillo and Hughes, 2009). These genes tend to

have dynamic chromatin, and this fluidity may allow the under-

lying DNA sequence to reposition certain nucleosomes away

from remodeler-imposed spacing uniformity. We observed co-

ordinated histone occupancy between two halves of adjacent

nucleosomes that share a common linker. Nucleosome reposi-

tioning may alter this relationship resulting in altered nucleo-

some stability.

Nucleosome splitting at the dyad, as one possible interpreta-

tion presented here, might explain the confounding biophysical

observation that mechanical disruption of nucleosomes with op-

tical traps produces a large cooperative tension transition that

cannot readily be explained by gradual unwrapping of DNA

from the histone octamer surface (Brower-Toland et al., 2002).

Instead the abrupt transition may reflect the splitting of a nucle-

osome into two halves.

Nucleosomes Are Asymmetric with Respect to
Transcription
Our findings suggest that RNA polymerase II first encounters a

unique and asymmetric +1 nucleosome (Figure 7). On the prox-

imal face, which encounters polymerase first, these asymmetric

features include H3-tail interactions with the edge of the NFR

that are coupled to H3K9 acetylation. Further into gene bodies,

H3 tails engage linkers, without dependence on H3K9ac, but

their purpose remains unclear. Loss of most (but not all) of the

H3 tail has surprisingly little impact on nucleosome organization,

as does loss of histone H1. Methylation of H3 lysines 4 and 79

(with the former on the H3 tail) has little apparent impact on H3

tail-linker interactions. However, H3K36 methylation substan-

tially delocalizes the crosslinking of H3 tails, such that it loses

substantial specificity for linkers. K36 methylation might alter

the trajectory of the H3 tail away from linkers, or the H3K36modi-

fication might bind known regulatory factors such as Rpd3S or

ISW1 complexes (Carrozza et al., 2005; Smolle et al., 2012),

thereby preventing crosslinking.



Back at the +1 nucleosome, selective placement of H2B

ubiquitylation on the NFR-proximal face may be important for

allowing RNA polymerase II passage as well as promoting nucle-

osome reassembly in the wake of transcription. The presence

of H2A.Z on the distal face of the +1 nucleosome may further

facilitate the passage of polymerase, through destabilization of

the promoter-proximal half of the nucleosome. This subnucleo-

somal asymmetry as well as overall array asymmetry may be

applicable tomulticellular eukaryotes including humans because

histones, nucleosome organization, and modifications are highly

conserved across species.

EXPERIMENTAL PROCEDURES

ChIP-Exo Assay

Saccharomyces strains (listed in Table S1) were grown in rich media and sub-

jected to formaldehyde crosslinking, then processed through the ChIP-exo

assay (Rhee and Pugh, 2012a), using either SOLiD or Illumina adaptors. Briefly,

cells were disrupted, and chromatin pellets were isolated and then solubilized

and fragmented by sonication. Fragmented chromatin was then subject to

immunoprecipitation using magnetic bead-conjugated antibodies directed

either against TAP-tagged histones or directly against histones or their modi-

fications. After washing the beads to remove unbound proteins and DNA, and

while still on the beads, the immunoprecipitates were polished, A-tailed, and

ligated to an appropriate sequencing library adaptor. Samples were then sub-

jected to lambda exonuclease digestion, which processively removes nucleo-

tides from 50 ends of double-stranded DNA until blocked by a protein-DNA

crosslink induced by formaldehyde treatment. The result is single-stranded

DNA, which was then eluted from the magnetic beads and converted to dou-

ble-stranded DNA by primer annealing and extension. A second sequencing

adaptor was then ligated to exonuclease treated ends, then PCR amplified,

gel purified, and sequenced.

MNase-Seq

Figure 3B experiments involvedMNase-seq, where crosslinked chromatin was

treated with 240 units of MNase for either 5 or 25 min (low versus high), then

subjected to H3 immunoprecipitation, Illumina library construction, gel size se-

lection, and deep sequencing. Libraries were sequenced by an Applied Bio-

systems 5500xl SOLiD System, Illumina HiSeq2000, or Illumina NextSeq500.

Sequencing tags were mapped to the reference yeast genome obtained from

Saccharomyces Genome Database (R55-10-Nov-2006).

Data Analysis

Occupancy levels (tag counts) for various histone positions were typically

plotted relative to genomic reference points of MNase-derived nucleosome

dyads (listed in Table S2) and summed within the intervals specified in Table

S2. Where occupancy correlations between data sets are reported, the Excel

function ‘‘correl’’ was used. Tables S3, S4, S5, S6, and S7 present the under-

lying values and calculations used in the figures. Array midpoints represent

the coordinate located half-way between the dyad of the +1 nucleosome

and the dyad of the terminal genic nucleosome. See Extended Experimental

Procedures for detailed experimental procedures, analyses methods, and

rationale.

ACCESSION NUMBERS

Sequencing data are available at NCBI Sequence Read Archive under acces-

sion number SRA059355.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, four

figures, and seven tables and can be found with this article online at http://

dx.doi.org/10.1016/j.cell.2014.10.054.
ACKNOWLEDGMENTS

We thank Yunfei Li, Rohit Reja, and William Lai for bioinformatic support,

Matthew Rossi for sharing unpublished ChIP input DNA data, and

members of the Pugh laboratory, the Penn State Center for Eukaryotic

Gene Regulation, and Philipp Korber for valuable discussions. We are

grateful to Bongsoo Park for computational assistance. National Institutes

of Health grant HG004160 supported this work. B.F.P. has a financial in-

terest in Peconic, LLC, which utilizes the ChIP-exo technology imple-

mented in this study and could potentially benefit from the outcomes of

this research.

Received: April 4, 2014

Revised: July 19, 2014

Accepted: October 13, 2014

Published: December 4, 2014

REFERENCES

Albert, I., Mavrich, T.N., Tomsho, L.P., Qi, J., Zanton, S.J., Schuster, S.C., and

Pugh, B.F. (2007). Translational and rotational settings of H2A.Z nucleosomes

across the Saccharomyces cerevisiae genome. Nature 446, 572–576.

Annunziato, A.T. (2005). Split decision: what happens to nucleosomes during

DNA replication? J. Biol. Chem. 280, 12065–12068.

Batta, K., Zhang, Z., Yen, K., Goffman, D.B., and Pugh, B.F. (2011). Genome-

wide function of H2B ubiquitylation in promoter and genic regions. Genes Dev.

25, 2254–2265.

Black, B.E., and Cleveland, D.W. (2011). Epigenetic centromere propagation

and the nature of CENP-a nucleosomes. Cell 144, 471–479.

Bönisch, C., and Hake, S.B. (2012). Histone H2A variants in nucleosomes and

chromatin: more or less stable? Nucleic Acids Res. 40, 10719–10741.

Brogaard, K., Xi, L., Wang, J.P., and Widom, J. (2012). A map of nucleosome

positions in yeast at base-pair resolution. Nature 486, 496–501.

Brower-Toland, B.D., Smith, C.L., Yeh, R.C., Lis, J.T., Peterson, C.L., and

Wang, M.D. (2002). Mechanical disruption of individual nucleosomes reveals

a reversible multistage release of DNA. Proc. Natl. Acad. Sci. USA 99, 1960–

1965.

Carrozza, M.J., Li, B., Florens, L., Suganuma, T., Swanson, S.K., Lee, K.K.,

Shia, W.J., Anderson, S., Yates, J., Washburn, M.P., and Workman, J.L.

(2005). Histone H3methylation by Set2 directs deacetylation of coding regions

by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592.

Chen, T.A., Smith, M.M., Le, S.Y., Sternglanz, R., and Allfrey, V.G. (1991).

Nucleosome fractionation by mercury affinity chromatography. Contrasting

distribution of transcriptionally active DNA sequences and acetylated histones

in nucleosome fractions of wild-type yeast cells and cells expressing a histone

H3 gene altered to encode a cysteine 110 residue. J. Biol. Chem. 266, 6489–

6498.

Dalal, Y., Furuyama, T., Vermaak, D., and Henikoff, S. (2007). Structure, dy-

namics, and evolution of centromeric nucleosomes. Proc. Natl. Acad. Sci.

USA 104, 15974–15981.

Dion, M.F., Kaplan, T., Kim, M., Buratowski, S., Friedman, N., and Rando, O.J.

(2007). Dynamics of replication-independent histone turnover in budding

yeast. Science 315, 1405–1408.

Ferreira, H., Somers, J., Webster, R., Flaus, A., and Owen-Hughes, T. (2007).

Histone tails and the H3 alphaN helix regulate nucleosome mobility and stabil-

ity. Mol. Cell. Biol. 27, 4037–4048.

Fleming, A.B., Kao, C.F., Hillyer, C., Pikaart, M., and Osley, M.A. (2008). H2B

ubiquitylation plays a role in nucleosome dynamics during transcription elon-

gation. Mol. Cell 31, 57–66.

Furuyama, T., Codomo, C.A., and Henikoff, S. (2013). Reconstitution of hemi-

somes on budding yeast centromeric DNA. Nucleic Acids Res. 41, 5769–5783.

Henikoff, S. (2008). Nucleosome destabilization in the epigenetic regulation of

gene expression. Nat. Rev. Genet. 9, 15–26.
Cell 159, 1377–1388, December 4, 2014 ª2014 Elsevier Inc. 1387

http://dx.doi.org/10.1016/j.cell.2014.10.054
http://dx.doi.org/10.1016/j.cell.2014.10.054


Henikoff, J.G., Belsky, J.A., Krassovsky, K., MacAlpine, D.M., and Henikoff, S.

(2011). Epigenome characterization at single base-pair resolution. Proc. Natl.

Acad. Sci. USA 108, 18318–18323.

Holstege, F.C., Jennings, E.G., Wyrick, J.J., Lee, T.I., Hengartner, C.J., Green,

M.R., Golub, T.R., Lander, E.S., and Young, R.A. (1998). Dissecting the regu-

latory circuitry of a eukaryotic genome. Cell 95, 717–728.

Huisinga, K.L., and Pugh, B.F. (2004). A genome-wide housekeeping role for

TFIID and a highly regulated stress-related role for SAGA in Saccharomyces

cerevisiae. Mol. Cell 13, 573–585.

Jiang, C., and Pugh, B.F. (2009). Nucleosome positioning and gene regulation:

advances through genomics. Nat. Rev. Genet. 10, 161–172.

Kaplan, N., Moore, I.K., Fondufe-Mittendorf, Y., Gossett, A.J., Tillo, D., Field,

Y., LeProust, E.M., Hughes, T.R., Lieb, J.D., Widom, J., and Segal, E. (2009).

The DNA-encoded nucleosome organization of a eukaryotic genome. Nature

458, 362–366.

Keogh, M.C., Kurdistani, S.K., Morris, S.A., Ahn, S.H., Podolny, V., Collins,

S.R., Schuldiner, M., Chin, K., Punna, T., Thompson, N.J., et al. (2005). Cotran-

scriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3

complex. Cell 123, 593–605.

Kornberg, R.D., and Lorch, Y. (1999). Twenty-five years of the nucleosome,

fundamental particle of the eukaryote chromosome. Cell 98, 285–294.

Krassovsky, K., Henikoff, J.G., and Henikoff, S. (2012). Tripartite organization

of centromeric chromatin in budding yeast. Proc. Natl. Acad. Sci. USA 109,

243–248.
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