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* Corresponding author. MB Stadler or D Schübeler, Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel, Baselstadt 4058, Switzerland.
Tel.: þ 41 61 697 6492; Fax: þ 41 61 697 3976; E-mail: michael.stadler@fmi.ch or Tel.: þ 41 61 697 8269; Fax: þ 41 61 697 3976; E-mail: dirk@fmi.ch

Received 2.11.11; accepted 22.5.12

Messenger RNA levels in eukaryotes are controlled by multiple consecutive regulatory processes,
which can be classified into two layers: primary transcriptional regulation at the chromosomal level
and secondary, co- and post-transcriptional regulation of the mRNA. To identify the individual
contribution of these layers to steady-state RNA levels requires separate quantification. Using
mouse as a model organism, we show that chromatin features are sufficient to model RNA levels but
with different sensitivities in dividing versus postmitotic cells. In both cases, chromatin-derived
transcription rates explain over 80% of the observed variance in measured RNA levels. Further
inclusion of measurements of mRNA half-life and microRNA expression data enabled the
identification of a low quantitative contribution of RNA decay by either microRNA or general
differential turnover to final mRNA levels. Together, this establishes a chromatin-based quantitative
model for the contribution of transcriptional and post-transcriptional processes to steady-state
levels of messenger RNA.
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Introduction

Regulation of mRNA levels is a key mechanism that defines
cell identity. Cellular homeostasis requires stable gene
expression patterns, while differentiation events in metazoan
development or responses to external stimuli involve resetting
of the transcriptional program. During the lifespan of an
mRNA from transcription over maturation, export, translation,
and decay, its activity and abundance is controlled by various
mechanisms: histone modifications and DNA methylation
determine the epigenetic state of the chromatin environment
of a gene depending on the DNA accessibility the transcription
machinery can bind and initiate transcription and thereby
produce primary transcript at different rates (Segal and
Widom, 2009; Bell et al, 2010). This is modulated co-trans-
criptionally by splicing and poly-adenylation (Millevoi and
Vagner, 2010; Nilsen and Graveley, 2010; Di Giammartino et al,
2011) and further regulated at the level of nuclear export. Once
the mRNA is in the cytoplasm it is subject to further post-
transcriptional processing, which can reduce the transcript
level in a targeted manner. Two major post-transcriptional
regulatory processes influencing the amount of mRNA

molecules available for translation are general RNA decay
and microRNA-mediated RNA interference.

Single-gene experiments have provided examples of the
involved regulatory mechanisms that include transcription
factor binding but also what is currently referred to as
epigenetic regulation. These summarize chromatin regulation
of DNA accessibility through active or repressive histone
modifications (Kouzarides, 2007) or nucleosomal positioning
(Kornberg and Lorch, 1999; Wyrick et al, 1999), transcrip-
tional repression by DNA methylation of gene promoters (Bird,
2002; Eckhardt et al, 2006; Weber et al, 2007) and post-
transcriptional regulation of RNA decay rates by non-coding
small RNAs (Ambros, 2004). Additionally, genome-wide
studies successfully approximated mRNA levels with informa-
tion of transcription factor binding and histone modification
patterns at promoter proximal sequences (Ouyang et al, 2009;
Karlic et al, 2010; Cheng and Gerstein, 2011).

mRNA abundance, however, may be determined to different
degrees by transcriptional and post-transcriptional events and
the contribution of these layers may vary depending on how
stable or how fast the expression change needs to be. At a
quantitative level, there is only a limited understanding of the
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individual contributions of these regulatory layers. To under-
stand these relationships, we abstract the many layers into two
processes: primary regulation of synthesis or transcription on
the level of chromatin and secondary, post-transcriptional
degradation of mRNA. We assume that the change of mRNA
level (dR/dt) depends linearly on mRNA synthesis and
degradation,

dR

dt
¼ txj½DNA� � dj½RNAj�

where [RNAj] is the RNA concentration for gene j, [DNA] is
constant ([DNA]¼ 1), txj is the transcription rate, and dj is the
degradation rate of gene j. For simplification, we initially
assume the degradation rate to be constant, meaning
independent of gene j. Therefore in steady state where dR/
dt¼ 0, the RNA concentration of gene j is proportional to
transcription and degradation rates of gene j. Subsequently
when we investigate the contribution of post-transcriptional
regulation, we allow dj to depend on gene j (see Supplemen-
tary information section 1 for details). Consequently, we can
estimate the individual contribution of transcription and
mRNA degradation, or mRNA decay, by correlating them with
mRNA levels, respectively.

Here, we explore quantitatively how a prediction of
transcription based on chromatin characteristics relates to
mRNA levels and how such an approach can quantify changes
in mRNA abundance that occur during the course of cellular
differentiation. We ask if pluripotent and differentiated cells
differ in their regulatory behaviors, potentially relating to
differences in cell cycle and the ability to set and propagate
epigenetic marks or a different usage of post-transcriptional
processes. As a biological model, we use mouse stem cells that
we differentiate into a highly pure neuronal population
through a defined progenitor state (Bibel et al, 2007). We
focus our analysis on pluripotent embryonic stem (ES) cells
and postmitotic glutamatergic neurons (TN). To quantitate the
contribution of different regulatory processes to observed
mRNA levels, we created a linear model for each cell type
based on various measures from transcriptional and post-
transcriptional layers. In these models, a measure that is a
strong correlate of transcription is expected to be highly
predictive of mRNA levels. We found that genome-wide
measures of histone modifications and polymerase occupancy
alone—measures which stand for the transcriptional layer of
regulation—allowed accurate prediction of mRNA levels and
explained most of the observed experimental variation in
steady-state mRNA levels. In addition, we measured transcript
half-life and microRNA abundance in these cells, representing
the post-transcriptional layer of regulation, and identified only
a minor contribution to the determination of mRNA levels.

Results

Histone marks are predictive of transcription rate

To separately quantify transcriptional and post-transcriptional
processes on a genome-wide level, we estimated transcription
rates for individual genes. Transcription rate is a function of
multiple factors: transcription factors bind influenced by the
chromatin environment and concordantly determine the rate

of transcription. We use chromatin correlates of transcription
as readout, which can be measured genome-wide in a robust
way by chromatin immunoprecipitation (ChIP) followed by
deep sequencing (ChIP-seq). We created genome-wide maps
for RNA polymerase II (Pol-II) and tri-methylation of lysines 4,
27 (Lienert et al, 2011; Tiwari et al, 2012) and 36 in histone H3
(H3K4me2, H3K27me3 and H3K36me3) in both dividing and
postmitotic cells (see Materials and methods for details) and
investigated the distribution of sequence reads along the
gene body in reference to gene activity defined by mRNA
abundance of representative transcripts (see Supplementary
information section 2 for details).

Figure 1A summarizes average distributions of these marks
for non-overlapping genes: Pol-II, H3K4me2 and H3K27me3
are located around the promoter of the gene (Boyer et al, 2006;
Guenther et al, 2007; Mohn et al, 2008; Rahl et al, 2010; Young
et al, 2011), while H3K36me3 is distributed over the gene body
(Pokholok et al, 2005; Barski et al, 2007; Bell et al, 2007;
Mikkelsen et al, 2007), steadily increasing within the first
2 kb downstream of the transcription start site (TSS).

Based on these observations, which are in accordance with
previously published models (Vakoc et al, 2006; Bell et al,
2007; Edmunds et al, 2008; Hon et al, 2009), we selected the
regions to quantify these marks for individual genes. While
most of the histone marks have a functional impact close to the
TSS, the abundance of H3K36me3 throughout the gene body is
notably by far the most informative measure for transcription
(Figure 1B and D; Supplementary information section 3 for
details), as could be expected from its mechanistic link to
transcription: H3K36me3 chromatin mark is set by a complex
that associates with the active elongating RNA polymerase II
(Li et al, 2002, 2003; Strahl et al, 2002; Krogan et al, 2003;
Xiao et al, 2003; Joshi and Struhl, 2005; Keogh et al, 2005;
Kizer et al, 2005; Pokholok et al, 2005; Sun, 2005; Yuan
et al, 2009).

Using these marks as regressors (Figure 1B) we infer a linear
model, where mRNA measured by deep sequencing is the
response variable (combining poly-A RNA and ribosomal-
depleted RNA sequencing, for details see Materials and
methods) (Figure 1C). The coefficients assigned to each of
the regressors by the linear model reflect their function as
active or repressive histone mark (sign of the coefficients) and
their contribution to explaining transcription (absolute value
of the coefficients). The correlation (controlled by a two-fold
cross-validation) between observed and predicted mRNA
abundance is 0.92. This means that 84.6% of the observed
differences in mRNA levels (variance) can be explained by this
model (Figure 1D, black bar)—exclusively based on measures
from the transcriptional layer.

The remaining 15.4% unexplained variance is a sum of post-
transcriptional effects as well as measurement noise. While
post-transcriptional effects could be explained by a more
sophisticated model that includes additional experimental
data from the post-transcriptional layer (see below), the
technical and biological measurement noise cannot be
predicted and thus defines an upper limit of prediction
accuracy. We went on to partition this sum, by (i) estimating
the noise, and thereby the maximum variance that can be
explained by our regressors and (ii) assigning relative
contributions of two major post-transcriptional processes—
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microRNA-mediated degradation and RNA decay—to final
mRNA levels.

Estimating the upper bound of explained variance
in RNA levels

Fluctuations in biological systems limit the explainable
variance of mRNA through the variability between biological
replicates. To determine how much of the remaining unex-
plained variance is due to such biological variability and
measurement noise versus actual post- or co-transcriptional
processes, we estimated the maximum variance to be
explained given the variability in the data. In the linear model
noise originates from both measurements of mRNA levels and
measurements of chromatin marks. Since we use multiple
regressor measurements that each have independent noise,
their individual noise adds up, which in turn sets the limits of
explainable variance. To estimate its upper bound, we follow

the theory of noise propagation to calculate model noise based
on replicates of RNA-seq and ChIP-seq experiments (see
Supplementary information section 4 for details). This
approach sets the maximal explainable variance in mRNA
levels to 91% (Figure 1D, light-gray bar). The variance in RNA
levels, which remains to be explained, is therefore the
difference between this maximal to be explained variance
and the variance that is already explained by the linear model
using transcriptional information. In the case of ESC, this
difference is 6.4%.

The effect of degradation on steady-state mRNA
level

Having estimated transcription rate and an upper bound for
explainable variance, we next explored the remaining 6.4%
unexplained variance. We assumed that genes with lower
measured RNA level than predicted by the transcription
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Figure 1 Using histone marks and RNA polymerase II to model mRNA levels. (A) Metagene plot showing the distribution of histone marks along the gene body of
genes aligned at their TSS with low, intermediate, and high expression levels. (B) Scatter plot of RNA polymerase II (Pol-II, green) and three histone marks H3K36me3
(dark blue), H3K4me2 (light blue), H3K27me3 (orange) versus mRNA levels on the vertical axis. The number of reads aligned to either gene body (H3K36me3, mRNA)
or at the TSS (H3K4me2, H3K27me3, Pol-II) is shown in logarithmic scale. (C) Predicted transcription rate combining the four measures in a linear model versus mRNA
level. Axes as in (B). (D) Bar plot showing the fraction of total variance in mRNA levels that is explained by each single histone mark, Pol-II occupancy or a linear
combination of them (dark gray). The maximally explainable variance (light gray) is limited by the amount of measurement noise (see Supplementary information section
4 for details). Error bars indicate 95% confidence interval.
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measures are degraded more rapidly than average due to post-
transcriptional downregulation of their transcript. To test this
hypothesis, we inferred the RNA decay rates of genes by
measuring their abundance in a time course after inhibition of
transcription with actinomycin D (see Materials and methods
and Supplementary information section 5 for details). Tran-
script abundance was determined in replicates at 0, 1, 2, 4, and
8 h after inhibition of transcription, but not later in order to
reduce secondary effects due to long chemical treatment. From
the degradation slope, we calculate the RNA half-life according
to Sharova et al (2009), summarized in Figure 2A and B. The
high correlation between biological replicates allowed us to
extrapolate half-life times up to 20 h and thus to include genes
with slower decay rates. In accordance with a previous study
in mouse ES cells (Sharova et al, 2009) we observe a mean
half-life of around 8 h with a distribution tailed toward longer
half-lives (Figure 2B). The extremely short-lived RNAs mostly
belong to the class of non-polyadenylated genes, which are not
protected from degradation (Supplementary information

section 5; Supplementary Figure 7). These genes are expected
to show lower mRNA levels compared with other genes with
the same predicted transcription rate. Indeed, short-lived
RNAs are deviating negatively from the linear fit. This is
particularly visible in the shift in the boxplots in Figure 2C in
the 40–100% transcription bins, while there are hardly short-
lived genes in the low-transcribed bins (Supplementary
information section 5; Supplementary Figure 8). The degree
to which the half-life explains additional variance in mRNA
levels can be quantified by the correlation of the half-life with
the residual of the linear fit. This correlation is 0.3; meaning of
the 15.4% unexplained variance of mRNA levels in the
transcriptional model, mRNA half-life explains 0.32¼ 9%
(Supplementary information section 5; Supplementary
Figure 9). As an alternative we can simply include the half-
life as an additional feature in the linear model and infer the
correlation with the measured mRNA levels again. Indeed, the
explained variance increases from 84.6 to 86%.

To test if this result is independent from the experimental
approach to measure half-life, we next employed metabolic
labeling of mRNA (Dölken et al, 2008; Rabani et al, 2011;
Schwanhäusser et al, 2011). After a short pulse of a modified
ribonucleotide newly synthesized and pre-existing mRNA
fractions are separated to determine their differential abun-
dance in order to estimate a decay rate. This method has the
advantage of not interfering with the transcriptional program,
as does actinomycin D, and thus is less likely to cause indirect
effects (Dölken et al, 2008). On the other hand, it includes
several experimental steps such as chemical treatment and
affinity purification of RNA and so far has only been used as a
single time point measure rather than a time-course series.

Using the metabolic labeling approach, we obtained a highly
similar additional contribution of mRNA half-life to overall
mRNA levels (total explained variance 85.9%; see
Supplementary information section 6 for details). Notably,
the variance in mRNA levels explained by transcript half-life
measures alone is between 11 and 12%, for thioU and
actinomycin D derived half-lives, respectively. Assuming that
both measures are not completely dominated by noise we can
interpret these values as a theoretical upper bound for the
relative contribution of transcript half-life to mRNA levels.
This further supports the observation of a minor contribution
of mRNA half-life to steady-state levels inferred by different
methods.

The effect of microRNAs on steady-state mRNA
level

Next, we investigated whether we can attribute part of the
observed mRNA half-life to the activity of microRNAs that
target selected messages for degradation. To define the
percentage of variance in mRNA level that can be explained
by microRNA mediated degradation requires the identification
of mRNAs that are regulatory targets of microRNAs. This can
be attempted by identifying mRNAs bound to proteins
involved in the RNAi pathway (such as Ago-IP; Beitzinger
et al, 2007; Landthaler et al, 2008; Chi et al, 2009; Hafner et al,
2010) or by calculating the enrichment for motifs complemen-
tary to the microRNAwithin 30-untranslated regions (UTRs) of
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Figure 2 Effect of RNA half-life on mRNA levels. (A) Example genes (short-
lived histone gene Hist1h2bb (orange) and the stable gene Adck5 (purple))
illustrating the inference of mRNA half-lives from expression data. Data points
correspond to measured mRNA abundance at various time points after inhibition
of transcription (time zero). (B) Half-life distribution of RefSeq genes with
estimated mRNA decay rates. Half-lives of very stable genes were set to 21 h
(the maximal inferable half-life given the experimental set-up) (see
Supplementary information section 5 for details). (C) Genes are classified into
five equal groups according to predicted transcription rate (0–100%), and within
each group measured mRNA levels are shown as boxplots separately for genes
with different mRNA half-life (color coded). Within a transcription group with a
sufficient number of genes, short-lived genes show less measurable mRNA than
long-lived genes. In the two low transcription bins (0–40%), mRNA levels are less
well modeled and they are depleted of short-lived mRNAs (see Supplementary
Figure 7 for illustration).
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mRNAs (van Dongen et al, 2008) or by predicting targets using
a combination of sequence, structure, and conservation of the
microRNA and its target mRNA site (Enright et al, 2003; Lewis
et al, 2003; Rehmsmeier et al, 2004; Krek et al, 2005; Gaidatzis
et al, 2007). These methods share a high false-positive rate
since actual targets are not only defined by sequence
complementarity alone, but by additional sequence and
structural constraints and other modulating factors that are
currently only poorly understood.

To circumvent these potential limitations, we initially based
our definition of microRNA-targets on mRNAs that increase in
expression in ES cells that lack microRNAs due to a genetic
deletion of the gene encoding Dicer (Hutvágner et al, 2001;
Murchison et al, 2005). An increased mRNA abundance in
Dicer� /� cells suggests that these transcripts had been under
negative control by microRNAs in wild-type ES cells
(Figure 3A and B). Consequently, we correlate fold-changes
in mRNA abundance between Dicerþ /� and Dicer� /� cells
with the deviation from the model in the linear fit (also referred
to as ‘residual of the linear fit’). This did not reveal a
relationship between negative residuals indicative for post-
transcriptional regulation and the likelihood of an mRNA
being a microRNA target (correlation between fold-change
upon Dicer KO and residual is r¼ 0.01; Figure 3C;
Supplementary information section 7).

Importantly, however, it has been shown that expression
changes of mRNAs upon removal of all microRNAs in
Dicer� /� cells are relatively small in general (B2-fold;
Babiarz et al, 2008). It is thus conceivable that such small
effects are not detectable in the population of all mRNAs that
consist of targets and non-targets, changing their expression
both, through direct effects caused by the lack of microRNAs
and indirect effects unrelated to microRNAs. To test this
hypothesis, we directly compared high-confidence targets
(based on fold-change in abundance) with non-targets
(Figure 4A and B). We stepwise increase the cutoff applied to
the change in mRNA levels upon Dicer KO to define microRNA
targets, thereby selecting a smaller and smaller subgroup and
inferred for each of these subgroups the correlation of residual
and fold-change (Figure 4C). In these groups of higher
confidence microRNA-targets, we can detect a negative
correlation with the residual (Figure 4C, dotted line;
Supplementary information section 7; Supplementary
Figure 14). We thus conclude that genes that are likely
microRNA targets have indeed less detectable transcript
than expected based on their predicted transcription rate.
However, this effect has only a minor impact at the genome-
wide scale.
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Figure 4 Focus on high-confidence microRNA target genes. (A) Same plot as
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To exclude that this observation is a consequence of our
definition of microRNA targets in Dicer� /� cells, we
additionally employed an in-silico target prediction method
(Gaidatzis et al, 2007), which assigns for each possible
microRNA-target site interaction a posterior probability
reflecting the likelihood that this interaction occurs. We weight
the posterior probability of every interaction with the
abundance of the respective microRNA, inferred by small
RNA sequencing. For every gene, all interaction sites are
summed up and result in an ‘iMir’ score, reflecting the
cumulative likelihood of a transcript to be down-regulated by
microRNAs (see Supplementary information section 8 for
details). Similarly to the results based on the experimental
microRNA-target definition, we only observed a small effect on
mRNA levels among a subset of high-confidence targets

Transcriptional and post-transcriptional regulation
in dividing versus postmitotic cells

Having established that chromatin and bound polymerase are
highly predictive of mRNA levels in rapidly dividing stem cells,
we next asked if the same trend is observed in postmitotic
neurons that have exited the cell cycle. Consequently we
differentiated stem cells first into neuronal progenitors (NPs),
which show reduced proliferation and further into terminal
neurons, which do not divide. Similarly to the analysis in ES,
we determined globally the abundance of mRNA, microRNA,
Pol-II and of several histone marks and rebuild the linear
model. This revealed that at all three stages chromatin data are
comparably predictive for mRNA levels (Figure 5A).

To compare post-transcriptional contribution between cell-
types, we also derived mRNA half-life data sets at the TN stage.

Including mRNA half-life in TN as regressor in the linear model
increased explained variance (r2) of mRNA in TN about 1%,
from 79 to 80%, revealing an equally low contribution of
mRNA degradation in neurons as the one observed in dividing
stem cells. Together, this suggests that there is no general
change in regulatory contributions once stem cells have exited
the cell cycle and, in this particular case, gain neuronal
functions.

Having defined the relation between chromatin measures,
RNA decay and mRNA abundance at individual cell states, we
next asked whether changes in transcription or changes in
degradation between cell states are equally predictive for
changes in mRNA levels. We fitted the linear model using the
differences in measurements between two cell types, which
reveal that changes in chromatin can indeed predict 67%
of the change in mRNA levels. Similarly, changes in transcript
half-life can explain 0.4% of the remaining variance (see
Supplementary information section 9 for details). This
illustrates that the experimental measurements in combina-
tion with the applied analytical approach enable quantification
of the relative contributions of transcription and degradation
to changes in mRNA levels.

Influence of cell division on the information
content of transcription-coupled chromatin marks

H3K36me3 is set by a histone methyltransferase that interacts
specifically with the elongating RNA polymerase II (Li
et al, 2002, 2003; Strahl et al, 2002; Krogan et al, 2003; Xiao
et al, 2003; Joshi and Struhl, 2005; Keogh et al, 2005; Kizer
et al, 2005; Pokholok et al, 2005; Yuan et al, 2009). As a
consequence, H3K36me3 accumulates with repeated rounds
of transcription explaining why this mark can not only predict
sites but also rate of transcription (Pokholok et al, 2005; Barski
et al, 2007; Bell et al, 2007; Mikkelsen et al, 2007; Edmunds
et al, 2008; Buratowski and Kim, 2010; Wagner and Carpenter,
2012). In dividing cells, new nucleosomes that are not H3K36
tri-methylated are deposited during genome replication. This
is expected to dilute the prevalence of H3K36 methylation
while this modification should further accumulate in non-
dividing cells. In turn, rate of cell division might influence the
ability to predict mRNA levels from this modification. A
potential accumulation of H3K36me3 in non-dividing cells
could lead to higher sensitivity to predict transcription at
weakly expressed genes and, in case all available residues are
modified, to saturation and reduced predictive power at highly
expressed genes. To test the hypothesis of different H3K36me3
signal in dividing versus non-dividing cells, we group genes
according to their mRNA abundance into low and high
expressed and correlate their mRNA levels with the abundance
of the transcription coupled mark H3K36me3 along the gene
body (Figure 5B and C). In the dividing cell types ES and NP,
this mark shows highest predictive power for highly expressed
and reduced sensitivity for lowly expressed genes. However,
in postmitotic neurons there is a clear shift: in these cells,
predictability is now highest for low expressed genes in
comparison with highly expressed genes.

This is fully compatible with a model whereby chromatin
modifications such as H3K36me3 integrate transcriptional

ES NP TN

Predicted transcription

M
ea

su
re

d 
R

N
A

0 5 10 15
Log2 (measured RNA)

F
re

qu
en

cy

Low High

ES NP TN
Cell type

C
or

re
la

tio
n 

(r
)

A

B C

Figure 5 H3K36me3 explains most of the variance in mRNA level. (A) Scatter
plot of predicted transcription rate versus measured mRNA level for the ES, NP,
and TN. (B) Distribution of mRNA levels in ES, categorized into low and high
expression groups. (C) Correlation (r) between H3K36me3 and mRNA for genes
in expression groups from (B) in ES, NP, and TN. The correlation of H3K36me3
with mRNA level differs between dividing cells and postmitotic TN cells: In diving
cells (ES and NP), it is best for high expressed genes, while in the postmitotic TN,
it is best for low expressed genes. Error bars indicate 95% confidence interval.
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activity over time and that the resulting signal is diluted with
every cell division. In turn, the sensitivity range changes in
non-dividing cells, where signal for H3K36me3 accumulates
above detection threshold for lowly expressed genes but also
saturates for highly expressed genes.

Regulatory differences between tissue-specific
and housekeeping genes

Genes can be classified according to their expression
characteristics between cell types and tissues. Figure 6A
shows a histogram of the number of tissues with detectable
mRNA abundance (log2 intensity47) for the same set of genes
studied in 72 tissues and cell types profiled in the SymAtlas
project (Su et al, 2004). This reveals a clear bimodal
distribution where genes show either widespread activity
(expressed in most samples, also referred to as ‘housekeeping’
genes) or selective activity in only up to five samples (also
referred to as ‘tissue-specific’).

This global behavior is also evident in the stem cell to
neuron differentiation that we study here, where genes with
widespread activity according to SymAtlas are enriched for
genes that are expressed in both cell types, while tissue-
specific genes tend to be expressed in either one or none of the
two studied cell types (P-valueo2.2e� 16, see Supplementary
information section 10 for details). Importantly, previous
studies already noted that these two classes of genes differ in
their regulation: housekeeping genes are mostly under the
control of CpG rich promoters, while tissue-specific genes
show a high frequency of CpG poor promoters (Zhu et al, 2008;
Mohn and Schübeler, 2009). These two classes of genes are
differentially occupied by histone modifications (She et al,
2009), show different exon density (Eisenberg and Levanon,
2003; Vinogradov, 2004) and differ in 30UTR length and
sequence composition making them unequal targets for
microRNAs (Stark et al, 2005).

To ask if these classes of genes also differ in the relative
regulatory contribution of transcriptional and post-transcrip-
tional layers, we compared the predictability of mRNA levels
for tissue-specific and housekeeping genes using an identical
linear model approach as described above. In this model,
tissue-specific genes show more negative deviation from
the fit, corresponding to observed mRNA levels being
lower than predicted based on the transcriptional features
(Figure 6B). We conclude that tissue-specific genes are more
prominently controlled by post-transcriptional regulation than
housekeeping genes.

Discussion

In our study, we tried to quantify the relative contribution of
transcriptional and post-transcriptional regulation to mRNA
levels. We show that tri-methylation of lysine 36 of histone H3,
a chromatin modification that is set co-transcriptionally,
provides a quantitative measure of the process of RNA
synthesis. We built a linear model that combines H3K36 tri-
methylation with other histone marks and Pol-II occupancy to
predict transcription and to relate it to mRNA levels. This
reveals a high correlation between predicted transcription
based on chromatin and actual mRNA abundance in both
dividing pluripotent cells and terminally differentiated neu-
rons, suggesting that transcription and mRNA levels are tightly
linked at different cellular stages. These findings are consistent
with two recent studies comparing direct measures of
transcription with mRNA abundance (Rabani et al, 2011;
Schwanhäusser et al, 2011). Furthermore, we investigated the
predictive power of histone marks towards changes in mRNA
levels between the two cell types and find similarly that
transcription is also the main determinant when looking at
genes that change their mRNA levels. Following the determi-
nation of transcriptional contribution, we investigated the
contribution of different post-transcriptional processes by
extending the model to include information on microRNA
targeting and transcript half-life. The effect of transcript half-
life is indeed detectable on a genome-wide scale explaining
minor additional variance of mRNA levels. Notably, however,
we can also detect this minor contribution when we look at the
predictive power of half-life toward changes in mRNA levels
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Figure 6 Post-transcriptional regulation in tissue-specific and ubiquitously
expressed genes. (A) Histogram of the number of cell or tissue types with
detectable expression of the analyzed genes. Genes are grouped in tissue-
specific (expressed in 1–5 tissues, purple), intermediate (gray), and ubiquitously
expressed (expressed in 70 or more tissues, green). (B) Genes are classified into
five equal groups according to predicted transcription rate (0–100%), and within
each group measured mRNA levels are shown as boxplots separately for genes
with different tissue expression (as in (A), color coded). At a given level of
transcription, tissue-specific genes have on average less measured mRNA than
ubiquitously expressed genes, suggesting that the degree of post-transcriptional
regulation is higher in tissue-specific genes.
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from ES to TN. Reliable reproduction of the effect of
degradation for changes in mRNA levels suggests that the
method to measure half-life is sensitive. Moreover, this
supports that degradation indeed has a small but measurable
role in determining mRNA levels and changes.

Targeted degradation of mRNA by the action of microRNAs
affects actual half-lives of mRNAs (Guo et al, 2010).
Importantly, however, we could not detect the actual effect
of microRNA at a genome-wide scale, but only in a subset of
high-confidence microRNA targets. This precludes correct
quantification of the contribution of microRNA regulation to
total mRNA decay. However, when focusing only on those
genes that are highly upregulated in cells that lack Dicer we
observe that microRNAs can explain about 2.25% of the
residual variance. Extrapolating this contribution to all genes
as a fraction of the total measured mRNA decay effect, we can
estimate that microRNAs contribute between 2.5 and 25% to
the total mRNA decay. This effect is compatible with the notion
that microRNAs generally cause small changes in mRNA
abundance (Babiarz et al, 2008; Sinkkonen et al, 2008). At the
same time, we foresee that the inherent complexity in correctly
predicting microRNA targets leads to an underestimation of
the actual effect.

The relatively low contribution of post-transcriptional
regulation on the mRNA levels and changes shows that that
the lion’s share of regulatory contribution is at the level of
mRNA synthesis and predictable from chromatin alone. It is
important to note that the identified quantitative contribution
(the fraction of explained variance), while important for
understanding the regulatory principles, does not translate to
functional relevance and thus should not be taken as a
measure for biological importance. For example, the Dicer� /�

cells used here to identify microRNA targets lack the ability to
differentiate into neurons. The low quantitative contribution
of post-transcriptional processes is however compatible with
the model that these mostly function in fine-tuning mRNA
levels rather than functioning as on-off switches (Mukherji
et al, 2011).

Our study shows that chromatin is highly predictive of
transcriptional output, in particular methylation of lysine 36 of
H3, a mark that is set throughout the gene body and depending
on the elongating polymerase. Most other histone marks that
are involved in transcription occur primarily at promoters and,
such as K4 methylation of CpG islands, can even occur at a
subclass of promoters without activity of the linked gene,
which in turn limits their predictive power (Weber et al, 2007).
Interestingly, H3K36me3 is a far better predictor than RNA
polymerase itself. We believe that this reflects the fact that the
histone mark is stable once it is set, while the polymerase
rapidly elongates and thus is only present at the gene at low
frequency. While it is inherently difficult to directly compare
the performance of H3K36me3 with direct labeling approaches
for ongoing transcription we note that the correlation between
H3K36me3 and steady-state mRNA levels is higher at all three
cell states than at recent reports using alternative approaches
like GRO-seq (r2¼ 0.62; Min et al, 2011).

One likely explanation for the high predictive power of
H3K36me3 is that it increases with every round of transcrip-
tion, which in turn means that it can eventually saturate, when
all possible lysines are methylated. In dividing stem cells such

saturation is not observed, likely due to the ‘dilution’ of
modified histones that occurs at every S-phase during genome
duplication in addition to the general turnover of nucleosomes
(Wirbelauer et al, 2005; Deal et al, 2010). In postmitotic cells,
however, we indeed observe such saturation at highly
expressed genes. At the same time, the accumulation of signal
increases the sensitivity for the detection of weakly expressed
genes, which in the linear model compensates for the reduced
predictability at highly expressed genes.

Materials and methods

Cell culture

Wild-type ES cells (129Sv-C57Bl/6) were cultured and differentiated as
previously described (Bibel et al, 2007; Mohn et al, 2008).

Chromatin immunoprecipitation

Cells were crosslinked in medium containing 1% formaldehyde for
10 min at room temperature. ChIP experiments were performed as
described before (Mohn et al, 2008), starting with 70mg of chromatin
and 5 mg of the following antibodies: anti-dimethyl-H3K4 (Upstate, no.
07-030 (Lienert et al, 2011; Tiwari et al, 2012), anti-trimethyl-H3K36
(Abcam ab9050), anti-trimethyl-H3K27 (Upstate, no. 07-449) (Lienert
et al, 2011; Tiwari et al, 2012) anti-RNA-polymerase-II (Santa Cruz
Biotechnology, no. SC899) (Lienert et al, 2011; Tiwari et al, 2012).
Chromatin was sonicated for 10 cycles of 30 s using a Diagenode
Bioruptor. Precipitated DNA was subjected to next generation
sequencing.

Next generation sequencing

In all, 5–10 ng of precipitated DNAwas prepared for Solexa Sequencing
as described (Mikkelsen et al, 2007). Briefly, ChIP DNA was ligated to
adapters and ligation products of about 250 bp were gel purified on
1.5% agarose to remove unligated adaptors. DNA was amplified by 18
PCR cycles. DNA sequencing was carried out using the Illumina/
Solexa Genome Analyzer II (GA2) sequencing system. In addition, two
lanes of non-enriched chromatin from ES cells were sequenced and
pooled to serve as an input/background to calculate the enrichment of
reads obtained from ChIP-seq experiments.

The raw .srf and .wig files are accessible at GEO GSE33252.

Genomic coordinates

The July 2007 M. musculus genome assembly (NCBI37/mm9)
provided by NCBI (http://www.ncbi.nlm.nih.gov/genome/guide/
mouse/) and the Mouse Genome Sequencing Consortium (http://www.
sanger.ac.uk/Projects/M_musculus/) was used as a basis for all analyses.
Annotation of known RefSeq transcripts was obtained from UCSC.

Read filtering, alignment, and weighting

Low-complexity reads were filtered out based on their dinucleotide
entropy as follows: For each read, the dinucleotide entropy was
calculated according to the formula H¼Sifilog(fi), where fi is the
frequency of dinucleotide i in the read and the sum is over all
dinucleotides (i from 1 to 16). The read was filter out if its H was less
than half the dinucleotide entropy of the genome, typically removing
o0.5% of the reads in a given sample. Alignments to the mouse
genome were performed by the software bowtie (version 0.9.9.1;
Langmead et al, 2009) with parameters -v 2 -a -m 100, tracking up to
100 best alignment positions per query and allowing at most two
mismatches. To track genomically untemplated hits (e.g., exon-exon
junctions or missing parts in the current assembly), the reads were also
mapped to an annotation database containing known mouse
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sequences (microRNA from ftp://ftp.sanger.ac.uk/pub/mirbase/
sequences/13.0, rRNA, snRNA, snoRNA and RefSeq mRNA from
GenBank http://www.ncbi.nlm.nih.gov/sites/entrez, downloaded on
16 July 2009, tRNA from http://lowelab.ucsc.edu/GtRNAdb/ and
piRNA from NCBI (accessions DQ539889 to DQ569912). In that case,
all best hits with at most two mismatches were tracked. Each
alignment was weighted by the inverse of the number of hits. In the
cases where a read had more hits to an individual sequence from the
annotation database than to the whole genome, the former number of
hits was selected to ensure that the total weight of a read does not
exceed one. All quantifications were based on weighted alignments.
For generation of wiggle files, samples were normalized for library size
first and files were generated with a window size of 100 bps.

RNA sequencing

Poly-A-RNA-seq
RNA from ES cells, NP cells, and TN was isolated using the Trizol
(Invitrogen). The sequencing libraries were prepared according to
mRNA-Seq Sample Preparation Guide (Illumina) starting from 1mg of
total RNA and using oligo dT primers for selection of polyadenylated
mRNAs. The libraries were sequenced on an Illumina GA II analyzer.

Ribosome-depleted-RNA-seq
RNA was isolated from ES cells, NP cells, and TN using Trizol
(Invitrogen) followed by depletion of ribosomal RNA, starting with
2mg of total RNA and following the instructions of Ribo-Zero Kit
(Epicentre). Strand-specific RNA libraries were prepared according to
pre-release version of the Directional mRNA-Seq Library Preparation
guide (Illumina) and sequenced on an Illumina GA II analyzer.

Reads were mapped to the M. musculus transcriptome and normal-
ized to transcript length and sequencing library size.

The raw .srf and .wig files are accessible at GEO GSE33252.

Small RNA sequencing

RNA of ES, NP, and TN was isolated in triplicates from cell culture with
mirVanat microRNA Isolation Kit (AM1560) according to the kit
instructions. Small RNA was prepared for sequencing with Illumina
Small RNA Sequencing Kit (FC-102-1009) following the Small RNA
Sample Prep v1.5.0 protocol.

All samples were barcoded at the 30 end of the 50 adaptor using a
hamming distance two code with a 30 cytosine (AGGA, AGTC, ATCA)
and sequenced in three lanes (one lane per cell type) of an Illumina
GA2 instrument.

The raw .fastq and .wig files are accessible at GEO GSE33252.

Linear model to predict transcription rate

We used R (Team, 2011) and the function lm() to fit a linear model to
describe transcription rate. For every gene, we selected a representa-
tive transcript of median length. Only transcripts, which did not
overlap with alternative transcripts with different TSS or transcripts in
antisense direction, were kept for further analysis (Supplementary
information section 2).

ChIP-seq reads of Pol-II, H3K4me3, and H3K27me3 were mapped to
the TSS (±500 bp) of the representative transcript. H3K36me3 was
mapped to four different regions along the gene body: (i) exons within
first 2 kb of the transcripts, (ii) introns within the first 2 kb of the
transcripts, (iii) exons located 2 kb downstream from the TSS, and (iv)
introns located 2 kb downstream from the TSS (Supplementary
information section 3). Input chromatin sequencing reads were
mapped to the whole gene body and used as an additional regressor
to account for amplification and sequencing biases caused by the DNA
sequence itself.

These seven regressors were fitted to mRNA levels as response value
(mean read count of poly-A-enriched RNA sequencing and strand-
specific sequencing) with two-fold cross-validation. The squared
Pearson’s correlation coefficient corresponds to the explained variance
in the response variable.

Transcript half-life measurement

ES cells and TN of two independent biological replicates were treated
with actinomycin D as previously described (Sharova et al, 2009). RNA
was isolated from an equal number of cells with Trizol at 1, 2, 4, and 8 h
after treatment.

In all, 100 ng of extracted total RNAwas amplified using the Ambion
WT Expression kit (Ambion) and the resulting sense-strand cDNA
was fragmented and labeled using the Affymetrix GeneChip WT
Terminal Labeling kit (Affymetrix). Affymetrix GeneChip arrays were
hybridized following the ‘GeneChip Whole Transcript (WT) Sense
Target Labeling Assay Manual’ (Affymetrix) with a hybridization time
of 16 h. The Affymetrix Fluidics protocol FS450_0007 was used for
washing.

Scanning was performed with Affymetrix GCC Scan Control v.
3.0.0.1214 on a GeneChips Scanner 3000 with autoloader.

Subsequently arrays were normalized with RMA, without in
between normalization to preserve absolute mRNA abundance.
Decay slope of every transcript was inferred with a linear model
and only transcripts with reliably inferable slopes (RX0.4) were
kept for further analysis. Transcripts half-lives were calculated
from the mRNA abundance over time according to Sharova et al
(2009) (see Supplementary information section 5 for detailed
description).

The raw.CEL files and a table with normalized expressions are
accessible at GEO GSE33252.

To confirm our results obtained by actinomycin D treatment,
we infer mRNA half-life by metabolic labeling of nascent RNA
adapted from the protocol described in Dölken et al (2008).
RNA was isolated with Trizol, using 30mg RNA (a final concentration
of 120 ng/ml) for the biotinylation, followed by two chloroform/IAA
extractions on the bio tagged RNA. Non-denaturated RNA is
used in the IP with Dynabeads M-280 Streptavidin (#112.06D;
Invitrogen) for pull down (50ml/30mg RNA), followed by one elution
step with DTT.

See Supplementary information section 6 for experimental details,
analysis, and results. The raw.CEL files and a table with normalized
expressions are accessible at GEO GSE33252.

Data accession

All the data used in this study are accessible at GEO GSE33252.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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We thank members of the Schübeler laboratory for feedback
on the manuscript. Illumina sequencing was carried out at the
Quantitative Genomics Facility of the Department of Biosystems
Science and Engineering (D-BSSE). SCT is supported by a predoctoral
fellowship of the Boehringer Ingelheim Foundation. Research
in the laboratory of DS is supported by the Novartis Research
Foundation, by the European Union (NoE ‘EpiGeneSys’ FP7-
HEALTH-2010-257082, LSHG-CT-2006-037415), the European
Research Council (ERC-204264) and the Swiss initiative in Systems
Biology (SystemsX.ch).

Author contributions: SCT, MBS, DG, and DS conceived the study. RI
performed and analyzed strand-specific RNA sequencing. AS per-
formed H3K36me3 ChIP experiments. LH performed the metabolic
labeling experiments. EvN performed and supervised the estimation of
noise. PFS, MBS, and DS supervised the study. SCT, MBS, and DS wrote
the manuscript.

Conflict of interest
The authors declare that they have no conflict of interest.

Prediction of transcription rate from chromatin
SC Tippmann et al

& 2012 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2012 9

http://lowelab.ucsc.edu/GtRNAdb/
www.nature.com/msb


References

Ambros V (2004) The functions of animal microRNAs. Nature 431:
350–355

Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008) Mouse ES
cells express endogenous shRNAs, siRNAs, and other
Microprocessor-independent, Dicer-dependent small RNAs. Genes
Dev 22: 2773–2785

Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G,
Chepelev I, Zhao K (2007) High-resolution profiling of histone
methylations in the human genome. Cell 129: 823–837

Beitzinger M, Peters L, Zhu JY, Kremmer E, Meister G (2007)
Identification of human microRNA targets from isolated
argonaute protein complexes. RNA Biol 4: 76–84

Bell O, Schwaiger M, Oakeley EJ, Lienert F, Beisel C, Stadler MB,
Schubeler D (2010) Accessibility of the Drosophila genome
discriminates PcG repression, H4K16 acetylation and replication
timing. Nat Struct Mol Biol 17: 894–900

Bell O, Wirbelauer C, Hild M, Scharf AN, Schwaiger M, MacAlpine DM,
Zilbermann F, van Leeuwen F, Bell SP, Imhof A, Garza D, Peters AH,
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