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The genome-wide identification of pairs of interacting proteins is an
important step in the elucidation of cell regulatory mechanisms1,2.
Much of our present knowledge derives from high-throughput tech-
niques such as the yeast two-hybrid assay and affinity purification3,
as well as from manual curation of experiments on individual sys-
tems4. A variety of computational approaches based, for example, on
sequence homology, gene co-expression and phylogenetic profiles,
have also been developed for the genome-wide inference of protein–
protein interactions (PPIs)5,6. Yet comparative studies suggest that
the development of accurate and complete repertoires of PPIs is
still in its early stages7–9. Here we show that three-dimensional
structural information can be used to predict PPIs with an accuracy
and coverage that are superior to predictions based on non-structural
evidence. Moreover, an algorithm, termed PrePPI, which combines
structural information with other functional clues, is comparable in
accuracy to high-throughput experiments, yielding over 30,000 high-
confidence interactions for yeast and over 300,000 for human.
Experimental tests of a number of predictions demonstrate the ability
of the PrePPI algorithm to identify unexpected PPIs of considerable
biological interest. The surprising effectiveness of three-dimensional
structural information can be attributed to the use of homology
models combined with the exploitation of both close and remote
geometric relationships between proteins.

Until now, structural information has had relatively little impact in
constructing protein–protein interactomes, primarily because there is
a marked difference between the number of proteins with known
sequences and those with an experimentally known structure. For
example, as of early 2010, the Protein Data Bank (PDB) provided
structures for ,600 of the total complement of ,6,500 yeast proteins
(,10%), whereas the structural coverage of protein–protein complexes
is even more sparse, with only about 300 structures available out of the
approximately 75,000 PPIs (,0.5%) recorded in publically available
databases. However, ,3,600 additional yeast proteins have homology
models in either the ModBase10 or SkyBase11 databases. Moreover, there
were about 37,000 protein–protein complexes derived from multiple
organisms in the PDB and Protein Quaternary Structure12 (PQS) data-
bases, which might be used as ‘templates’ to model PPIs. Clearly, if
structure is to be useful on a large scale, it is essential that modelling
of individual proteins and of complexes be exploited.

A number of studies have used structurally characterized complexes
as templates to construct models of the complexes that might be
formed between proteins that have been classified as having sequence
and/or structural relationships to the proteins in the template13–15. We
searched more broadly for templates, using geometric relationships
between groups of secondary structure elements as revealed by struc-
tural alignment, independently of how they are classified. It has been
demonstrated that even distantly related proteins often use regions of

their surface with similar arrangements of secondary structure elements
to bind to other proteins16–18, suggesting the possibility of considerably
expanding the number of putative PPIs that can be identified. It is
likely that further expansion can be achieved if interactions involving
unstructured regions of proteins are taken into account, but these are
not considered in this work.

Our approach to the prediction of PPIs is embodied in an algorithm
we have named PrePPI (predicting protein–protein interactions),
which combines structural and non-structural interaction clues using
Bayesian statistics (see Fig. 1 and Methods for details). The structural
component of PrePPI involves a number of steps. Briefly, given a pair
of query proteins (QA and QB), we first use sequence alignment to
identify structural representatives (MA and MB) that correspond to
either their experimentally determined structures or to homology mod-
els. We then use structural alignment to find both close and remote
structural neighbours (NAi and NBj) of MA and MB (an average of
,1,500 neighbours are found for each structure). Whenever two (for
example, NA1 and NB3) of the over 2 million pairs of neighbours of MA
and MB form a complex reported in the PDB, this defines a template for
modelling the interaction of QA and QB. Models of the complex are
created by superimposing the representative structures on their corres-
ponding structural neighbours in the template (that is, MA on NA1 and
MB on NB3). This procedure produces about 550 million ‘interaction
models’ for about 2.4 million PPIs involving about 3,900 yeast proteins,
and about 12 billion models for about 36 million PPIs involving about
13,000 human proteins. Note that an interaction model is based on
structure-based sequence alignments of query proteins to their indi-
vidual templates (Supplementary Fig. 1) and that we do not construct a
three-dimensional model of each complex because the scoring of so
many individual complexes would be prohibitively time consuming
using standard energy functions (for example, as used in docking19).

Once an interaction model has been created, it is evaluated using a
combination of five empirical scores that measure properties derived
from alignments of the individual monomers to their templates
(Supplementary Fig. 1). The first score, SIM, depends on the structural
similarity between models of the two query proteins (that is, MA and
MB) and those in the template complex (that is, NA1 and NB3). The
next two scores determine whether the interface in the template com-
plex actually exists in the model. They are calculated as SIZ, the num-
ber, and COV, the fraction, of interacting residue pairs in the template
(for example, NA1–NB3) that align to some pair of residues in the
model (MA–MB). The final two scores reflect whether the residues that
appear in the model interface have properties consistent with those that
mediate known PPIs (for example, residue type, evolutionary conser-
vation, or statistical propensity to be in protein–protein interfaces). This
information is obtained from three publically available servers that
predict interfacial residues based on the sequence and structure of the
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individual subunits of the model20–22. These scores are calculated as OS,
which is identical to SIZ but with the additional requirement that both
residues in an interacting pair of the template align to predicted inter-
facial residues in MA and MB, and OL, the number of template inter-
facial residues that align to predicted interfacial residues in MA and MB.
We note that although the interaction models produced by our pro-
cedure can reveal the approximate locations of potential interfaces,
they will not, in general, be accurate at atomic resolution.

The five empirical scores are combined using a Bayesian network
(Supplementary Fig. 2) to yield a likelihood ratio (LR) that a candidate
protein–protein complex represents a true interaction (see Methods).
The network is trained on positive and negative ‘gold standard’ ref-
erence data sets. Similar to two recent studies23,24, we combine inter-
action data from multiple databases to ensure a broad coverage of true
interactions. We divide these sets into high-confidence (HC) and low-
confidence (LC) subsets (Supplementary Table 1); the HC sets contain
11,851 yeast interactions and 7,409 human interactions that have more
than one publication supporting their existence; interactions with only
one supporting publication compose the LC set. All potential PPIs in a
given genome not in the HC plus LC set form the negative (N) ref-
erence set. Using the Bayesian network classifier trained on the yeast
HC set, we select the best interaction model with the highest LR for
each PPI.

To assess quantitatively the performance of structural modelling
(SM), we compared it with a number of non-structural clues prev-
iously used to infer PPIs24–26: (1) essentiality of the proteins in the
interacting pair; (2) co-expression level; (3) gene ontology (GO) func-
tional similarity; (4) Munich Information Centre for Protein
Sequences (MIPS) functional similarity; and (5) phylogenetic profile
similarity. We used the same algorithms or data for clues 1–4 as previ-
ously described25 but developed our own phylogenetic profile algo-
rithm (for details, see Methods and Supplementary Table 2). Briefly,
a phylogenetic profile was constructed for every protein using a set of
completely resolved proteomes as references. Because interacting
proteins tend to co-evolve, proteins with similar profiles are predicted
to interact.

As shown in Supplementary Figs 3 and 4, SM yields comparable
performance to other clues over the entire range of false positive rate
(FPR) values but is considerably more effective at low FPRs (for
example, FPR #0.1%). This is critical as, owing to the huge number
of negative interactions, only very low FPR rates can produce a small
enough number of false positives to be used effectively in practice. At

low FPRs, SM by itself outperforms even the naive Bayesian classifiers
that combine all non-structure-based clues (NS). Looking specifically
at the thousands of high-confidence SM predictions in the LC and the
N sets with an LR score .600 (a value used in ref. 25 and correspond-
ing in our study to a FPR of ,0.1%; see Methods), about 70% and 50%,
respectively, share GO biological terms at, or more specific than, the
sixth level of the GO hierarchy, suggesting that many of these inter-
actions are real (Supplementary Fig. 5).

As mentioned earlier, PrePPI combines structural and non-structural
clues using a naive Bayesian network24–26. Supplementary Fig. 4 shows
that the performance of PrePPI is superior to that obtained from struc-
tural and non-structural evidence alone, implying that the two sources of
information are largely complementary. This point can be clearly seen in
the Venn diagrams of high-confidence (LR .600) predictions shown in
Supplementary Fig. 6. It is evident from the figure that combining struc-
tural and non-structural clues yields many more high-confidence pre-
dictions and identifies more interactions in the HC set than either source
of information alone. As an independent test of PrePPI, we assessed its
performance against one of the challenges in the 2009 Dialogue for
Reverse Engineering Assessments and Methods (DREAM) workshop
specifically aimed at PPI predictions27. As discussed in Supplementary
Table 3, PrePPI outperformed all other methods for cases where struc-
tural information is available.

We compared the performance of PrePPI to that of high-throughput
experiments (Supplementary Table 4) using data provided in a detailed
comparison of different high-throughput techniques reported previ-
ously23. We used the data sets in ref. 23 to define true positives, and
compiled a new negative reference set that consists of protein pairs in
which each protein is annotated as localized to a different cellular com-
partment (see Supplementary Fig. 7 and Methods). This was essential
for comparison to experimental assays because, as constructed, our N
set excludes data compiled from high-throughput experiments, and
hence the FPR for experimental assays is artificially zero (see also
related discussion in supplementary information in ref. 23).

As can be seen in the receiver operating characteristic (ROC) curves
reported in Fig. 2a and Supplementary Fig. 8, PrePPI performance is
generally comparable, although somewhat better overall, than high-
throughput methods for most data sets that were tested. Figure 2b
shows a Venn diagram in which the PrePPI data set is based on an
LR cutoff of 600 (FPR < 0.1%). Results for other LRs and additional
reference sets are shown in Supplementary Fig. 9. As can be seen, many
of the interactions inferred by PrePPI are different from those identified
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Figure 1 | Predicting protein–protein interactions using PrePPI. Given a
pair of query proteins that potentially interact (QA, QB), representative
structures for the individual subunits (MA, MB) are taken from the PDB, where
available, or from homology model databases. For each subunit we find both
close and remote structural neighbours. A ‘template’ for the interaction exists
whenever a PDB or PQS structure contains a pair of interacting chains (for
example, NA1–NB3) that are structural neighbours of MA and MB,
respectively. A model is constructed by superposing the individual subunits,

MA and MB, on their corresponding structural neighbours, NA1 and NB3. We
assign five empirical-structure-based scores to each interaction model
(Supplementary Fig. 1) and then calculate a likelihood for each model to
represent a true interaction by combining these scores using a Bayesian
network (Supplementary Fig. 2) trained on the HC and the N interaction
reference sets. We finally combine the structure-derived score (SM) with non-
structural evidence associated with the query proteins (for example, co-
expression, functional similarity) using a naive Bayesian classifier.
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by high-throughput assays. Methods that combine both approaches
may thus prove to be highly effective in expanding the coverage of PPIs.

At an LR cutoff of 600, PrePPI predicts 31,402 high-confidence
interactions for yeast and 317,813 interactions for human. These, as
well as predictions with lower LR scores, are available in a database
from the PrePPI website (http://bhapp.c2b2.columbia.edu/PrePPI/).
As a further validation of PrePPI we tested its performance on the
approximately 24,000 new interactions involving human proteins that
were added to public databases after August 2010 (Supplementary
Table 5). Among these interactions, 1,644 are predicted by PrePPI to
have an LR .600 (based on a Bayesian classifier derived from pre-2009
data on yeast), so that they essentially correspond to experimental
validation of true predictions.

Specific experimental validation of 19 individual PrePPI predictions,
using co-immunoprecipitation assays, was carried out in four separate
laboratories, leading to confirmation of 15 of these interactions
(Supplementary Figs 10–14 and Supplementary Table 6). Specifically,
the investigators in each laboratory queried the PrePPI database for
previously uncharacterized interactions involving proteins of interest
and that, as much as possible, had relatively high SM and PrePPI scores
(see Supplementary Table 6 for more information).

One set of predictions involves potential PPIs formed between the
nuclear receptor peroxisome proliferator-activated receptor c (PPAR-c)
and other transcription factors. PPAR-c has a pivotal role in regulat-
ing glucose and lipid metabolism, the inflammatory response and
tumorigenesis, and is known to heterodimerize with retinoid X receptors
(RXRs) and to recruit cofactors to regulate target gene transcription.
PrePPI predicts high-confidence interactions between PPAR-c and
the transcription factors LXR-b (also known as NR1H2), PAX7,
PDX1, NKX2-2 and HHEX (Supplementary Table 6). Except for
HHEX, all of the interactions were validated (Supplementary Fig. 10).
The predicted interaction with nuclear receptor LXR-bmight have been
expected based on the ability of these proteins to heterodimerize through
their ligand-binding domains. Nevertheless, this specific interaction had

not previously been characterized and suggests a so far unrecognized
convergence of signalling and metabolic pathways regulated by these
two nuclear receptors. The interaction between the ligand-binding
domain of PPAR-c and the homeodomains of PAX7, PDX1 and
NKX2-2 are new observations that require further studies, as they
suggest that PPAR-c may have a role in endocrine progenitor and
pancreatic b-cell development.

A second set of examples involves suppressor of cytokine signalling
(SOCS3), an SH2-domain-containing protein that negatively regulates
cytokine-induced signal transduction. Until now, the mechanism of
the inhibitory function of SOCS3 has been primarily established for its
involvement in the JAK/STAT pathway. PrePPI predicts that SOCS3
forms complexes with GRB2 and RAF1, two key components in the
RAS/MAPK pathway, and these interactions were confirmed experi-
mentally (Supplementary Fig. 11A, B). PrePPI also predicts the forma-
tion of a complex between SOCS3 and BTK, a cytoplasmic tyrosine
kinase important in B-lymphocyte development, differentiation and
signalling, and this interaction was also validated (Supplementary
Fig. 11C). The SOCS3–GRB2 interaction is predicted to be mediated
by their SH2 domains, whereas the SOCS3 interaction with BTK is
predicted to be mediated by an SH2–SH3 domain interaction. Analysis
of the predicted binding preferences of SH2 domains as well as results
on other protein families indicate that the PrePPI scoring function
accounts, at least in part, for the binding preference of closely related
protein domains (Supplementary Fig. 15, see also later).

A third group of novel observations involves the identification
of kinases that interact with the clustered protocadherin proteins (pro-
tocadherin a, b and c (PCDH-a, -b and -c)). The PCDHs have six
cadherin-like extracellular domains, and unique cytoplasmic domains.
They assemble into large complexes at the cell surface, and associate
with a variety of proteins, including signalling adaptors, kinases and
phosphatases. Analysis of potential PCDH-kinase PPIs confirmed
published interactions between PCDH-a and -c with the tyrosine
kinase RET, and predicted interactions with ROR2, VEGFR2 and
ABL1 (Supplementary Table 6 and Supplementary Fig. 12; experiments
done in mice). PrePPI predicts that these PPIs are mediated by the
extracellular cadherin domains and immunoglobulin (Ig) domains, a
result that was confirmed experimentally (Supplementary Fig. 12A–D).
A hydrophobic residue, Phe 64, of the ROR2 Ig domain is predicted to
be in the centre of the interface it forms with PCDH-a4. Mutating this
Phe to an Ala, a smaller hydrophobic residue, has no detectable effect on
binding, whereas mutating it to charged residues considerably weakens
the interaction (Supplementary Fig. 12B, C). These results suggest that,
in addition to predicting binary interactions, PrePPI has the potential to
reveal novel and unsuspected interfaces.

The fourth group of experiments was carried out with the goal of
identifying new components of large protein–protein complexes. We
validated two previously uncharacterized interactions between the
special AT-rich sequence-binding protein SATB2 and the Emerin
‘proteome’ complex 32, and one involving the pre-mRNA-processing
factor PRPF19 and the centromere chromatin complex (Supplemen-
tary Fig. 13). It is important to emphasize that each of the PPIs detected
must be confirmed through appropriate in vivo experiments. Taken
together, however, these findings suggest that PrePPI has sufficient
accuracy and sensitivity to provide a wealth of novel hypotheses that
can drive biological discovery.

The accuracy and range of applicability of PrePPI, and the crucial
role of structural modelling, were unanticipated, but should not come
as a complete surprise. Most protein complexes in the PDB have
structural neighbours that share binding properties17, and protein
interface space may well be close to ‘complete’ in terms of the packing
orientations of secondary structure elements18. Moreover, these ele-
ments can be identified with geometric alignment methods17,28, a fact
that has been exploited in the approach introduced here. Although the
information required to predict whether two proteins interact appears
to be present in the PDB, the question has been how to mine the data.
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Three key elements are responsible for the success of structural
modelling and PrePPI. The first is the marked expansion in the num-
ber of interactions that can be modelled, owing to the use of both
homology models and remote structural relationships. About 8,600
PDB structures but more than 31,000 models are found as represen-
tatives of at least one domain of ,14,100 human proteins. If we had
only used experimentally determined structures in our analysis, a total
of only ,2.5 million human PPIs (versus 36 million when homology
models are used) could have been modelled. Similarly, had we limited
ourselves to structural neighbours taken from the same Structural
Classification of Proteins (SCOP) fold, only ,225 thousand interactions
could have been modelled, as opposed to 36 million.

As might be expected, predictions based on structural modelling
that use only PDB structures or close structural neighbours are more
likely to recover known interactions (defined by their presence in
databases) than those that only use homology models or remote struc-
tural relationships (Supplementary Fig. 16). However, the latter, on
their own, yield a marked expansion in the total number of interaction
models and, consequently, many more high-confidence predictions
and known interactions. Most importantly, in the calculation of the
PrePPI score, the huge number of low-confidence structural inter-
action models led to an even greater expansion in high-confidence
predictions when combined with functional, evolutionary and other
sources of evidence (Supplementary Fig. 16).

The second key element in our strategy is the efficiency of our
scoring scheme for interaction models, which allows us to evaluate
an extremely large number of models while still discriminating among
closely related family members. Discrimination among complexes
involving members of the same protein family—that is, specificity—
is obtained from the properties of the predicted interface, for example,
the statistical propensity of certain amino acids to appear in inter-
faces20,21 (and, additionally, from non-structural clues; for example,
are the two proteins co-expressed). As examples, our analysis of the
SH2 and GTPase families shows that the structural modelling (and
PrePPI scores) for these closely related proteins produce a wide range
of LRs, with the higher LRs associated with a higher probability of
being a known interaction (Supplementary Fig. 15).

The third element responsible for the success of PrePPI is the
Bayesian evidence integration method that allows independent and
possibly weak interaction clues to be combined to make reliable pre-
dictions and to improve prediction specificity (Supplementary Figs 15
and 16).

Figure 3 provides two examples of the use of remote structural
relationships and homology models. In Fig. 3a, an HC set interaction
of serine/threonine-protein kinase D1 (PRKD1) and protein kinase
C-e (PRKCE) is recovered by structural modelling using a complex of
two proteins in the ubiquitin pathway (not kinases) as template. Note
that PRKD1 and PRKCE are not sequence homologues of the two
corresponding ubiquitin pathway proteins and are classified as belong-
ing to different SCOP folds. However, the interaction model has a
significant SM score (LR 5 130) arising from both local structural
similarity and a conserved interface. Figure 3b describes a prediction
of an LC set interaction between the elongation factor 1-d (EEF1D)
and the von Hippel–Lindau tumour suppressor (VHL) using the same
template as that used in Fig. 3a. Again, there is no sequence relationship
between the target and the template proteins, and they are classified
into different folds. Nevertheless, the interaction model has an LR of
70. We note that the EEF1D and VHL were found to interact using
mass spectroscopy29 and by co-immunoprecipitation experiments
reported here (Supplementary Fig. 14).

The exploitation of homology models and of remote structural rela-
tionships implies that each new structure that is determined experi-
mentally can be used to detect large numbers of new functional
relationships, even if the protein in question is of only limited bio-
logical interest on its own. In this regard, our approach has benefitted
from structural genomics initiatives, which produced a large increase

in the coverage of sequence families that did not have structural repre-
sentatives30. We note that PrePPI appears in many cases to offer a
viable alternative to high-throughput experiments yielding, in addition
to a likelihood of a given interaction, a model (albeit a crude one) of the
domains and residues that form the relevant protein–protein interface.
This should in turn facilitate the generation of experimentally testable
hypotheses as to the presence of a true physical interaction. In con-
clusion, our study suggests the ability to add a structural ‘face’ for a
large number of PPIs, and that structural biology can have an import-
ant role in molecular systems biology.

METHODS SUMMARY
Details of the PrePPI algorithm, protein datasets, and experimental validations are
available in Methods.

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Proteins and domains. We obtained the yeast proteome from UniProt31, and
parsed its 6,521 proteins into 7,792 domains using the SMART online server32.
Similarly, for human, we identified 20,318 unique proteome members, producing
49,851 individual domains.
Structures. Structural representatives of the entire protein or different individual
domains were either taken directly from the PDB33, where available, or from the
ModBase10 and SkyBase11 homology model databases. PDB structures were iden-
tified by sequence homology, using a single iteration of PSI-BLAST34 and an
E-value cutoff 0.0001; matching structures in the PDB were required to have
.90% sequence identity and cover .80% of the query target (the entire protein
or any domain). Homology models were selected based on two criteria: (1) an E
value less than 1 3 1026; or (2) an E value less than 1 and either a structure-based
pG score $0.3, for SkyBase models35, or a ModPipe protein quality score
(MPQS) $0.5, for ModBase models. When multiple structures were available
for a target/domain we chose only one representative using: (1) the PDB structure
with the best resolution, if available; (2) the ModBase model with the highest
MPQS score; or (3) the SkyBase model with the highest pG score. On the basis
of these criteria, we identified 1,361 PDB structures and 7,222 homology models
for 4,193 different yeast proteins. Among these, 627 proteins could be matched to a
PDB structure and 3,662 to a homology model, with some proteins having both.
For human, 14,132 proteins were matched to 8,582 PDB structures and 30,912
models. Specifically, 4,286 proteins were matched to a PDB structure and 11,266
were matched to a homology model, with some proteins matched to both.
Structural neighbours. We used structural alignment tool Ska36 to identify struc-
tural neighbours. Ska allows alignments to be considered significant even if only
three secondary structural elements are well aligned. At a protein structure
distance37 (PSD) cutoff of 0.6, we identified 1,448 neighbours (both close and
remote) per structure for 7,875 structures of 3,911 yeast proteins, and 1,553
neighbours per structure for 36,743 structures of 13,545 human proteins.
Template complexes. As of February 2010, there were about 37,000 protein–
protein complexes involving multiple organisms in the PDB and PQS12 databases.
We used 28,408 and 29,012 complexes as templates during our modelling of yeast
and human interactions, respectively. PQS terminated updates after August 2009,
and has been replaced by the protein interfaces, surfaces and assemblies (PISA)
server38, which will be used in future work.
Interaction modelling. Given a pair of proteins or domains, we built their inter-
action model by superimposing their structures with the corresponding structural
neighbours in the templates (Fig. 1). For yeast, we built 550 million models for 2.4
million potential PPIs, and for human, we built 12 billion models for 36 million
potential PPIs. We calculated five structure-based scores for each model (Sup-
plementary Fig. 1) and used a Bayesian network to combine these scores into an LR
to evaluate an interaction model (Supplementary Fig. 2) based on the HC and the
N reference sets (Supplementary Table 1).
Non-structural clues. For the yeast proteome, we downloaded the raw data for
four different clues; protein essentiality (ES), co-expression (CE), GO39 similarity,
and MIPS40 similarity, from the Gerstein laboratory (http://networks.gersteinlab.
org/intint/supplementary.htm). We also implemented a measure of phylogenetic
profile (PP) similarity based on that introduced in reference41 (see later). We
calculate an LR for each non-structure clue based on our HC and N reference
sets. For the human proteome, we calculated three different clues following the
protocol previously described25 for GO and CE, and as described later for PP. For
CE, we used the expression data set (GDS1962), which is one of the most compre-
hensive microarray studies of 19,803 human genes under 180 different conditions42,
from the Gene Expression Omnibus43.
Phylogenetic profile similarity. Using a similar method to that previously
described44, we calculated a continuous score between 0 and 1 to measure the
occurrence of a protein and/or domain in 1,156 reference organisms of complete
proteome information from UniProt. These scores form a phylogenetic profile
vector (PPV), and the Pearson correlation coefficient (PCC) was used to define the
similarity between two vectors. For proteins with multiple domains, each domain’s
PPV is calculated independently, and the highest PCC score of different domain
pairs is selected as the similarity score between two proteins. Similarity scores for
pairs of proteins/domains with .40% sequence identity and, of course, for homo-
meric protein/domain pairs were not calculated.
The naive Bayes classifier. We combine the different types of clues with each
other and structural modelling into a single naive Bayes PPI classifier24–26:

LR(c1,c2,:::,cn)~ P
n

i~1
LR(ci)

Tenfold cross validation. We randomly divided the positive and negative ref-
erence sets into ten subsets of equal size. Each time, we used nine subsets to train

the classifier, and obtained the LR for each protein pair, that is, interaction, in the
excluded subset from the trained classifier. We repeated the procedure ten times
using different subsets as training and testing data sets and finally obtained an LR
for each interaction. We counted the number of true positives (predictions in the
HC set) and false positives (predictions in the N set) and calculated the prediction
TPR 5 TP/(TP1FN), and the FPR (false positive rate) 5 FP/(FP1TN), to plot the
ROC curves. In all cases, we have removed structural interaction models based on
a template that corresponds to an actual crystal structure of the two target proteins.
Comparison with high-throughput experiments. We retrieved eight high-
throughput experiment data sets for yeast and three for human (Supplementary
Table 4). In our comparison, in addition to the HC sets, we also use the same
reference interaction sets used in the comparative study of different high-throughput
techniques. These include ,1,300 PPIs (CCSB-BGS) and a subset of 188 highly
reliable PPIs that are referenced in at least four manuscripts (CCSB-PRS). We
compiled a new negative reference set, which consists of 440,000 yeast and
1,750,000 human protein pairs in which each protein in a pair is annotated as
localized to a different cellular compartment (Supplementary Fig. 7).
New protein interaction data set. We used 23,779 human protein interactions
newly deposited into databases after August 2010 as independent validations of
PrePPI predictions, which were based on pre-2010 data (Supplementary Table 5).
Co-immunoprecipitation in mammalian cells. Forty-eight hours after transfec-
tion with indicated expression plasmids, HEK-293T cells were lysed in lysis buffer
(20 mM HEPES, pH 7.9, 100 mM NaCl, 0.2 mM EDTA, 1.5 mM MgCl2, 10 mM
KCl, 20% glycerol and 0.1% Triton-X100 for Supplementary Figs 10 and 11; 20 mM
Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA and 1% NP-40 for Supplementary
Fig. 12; and 13 Cell Lysis Buffer (Cell Signaling) for Supplementary Fig. 13)
supplemented with Protease Inhibitor Cocktail (Roche). Cell lysates were sonicated
and pre-cleared with 30ml of Protein G Sepharose (GE) before incubating with 15ml
anti-Flag M2 or 40ml anti-HA Affinity Gel (Sigma-Aldrich) overnight at 4 uC with
shaking. Agarose beads were washed four times with lysis buffer. Lysates (input)
and immunoprecipitates were denatured in reducing protein sample buffer, ana-
lysed by SDS–PAGE and immunoblotted with anti-Flag (Sigma-Aldrich), anti-HA
(Roche), anti-PPAR-c (Santa Cruz), anti-ABL1 (Santa Cruz), anti-ROR2 (Cell
Signaling) or anti-VEGFR2 (Abcam) antibodies as indicated.
Protein analysis from brain. Crude membrane fractions were prepared from
brains of postnatal day (P)0 to P5 wild-type mice or Pcdhgdel/del mice provided
by X. Wang. The brain tissues were homogenized in a buffer A (5 mM Tris-HCl,
pH 7.4, 0.32 M sucrose, 1 mM EDTA, 50 mM dithiothreitol) supplemented with
the Complete Protease Inhibitor Cocktail. The nuclei and insoluble debris were
collected by a low-speed centrifugation at 1,000g for 10 min and subsequently the
supernatant was collected by centrifugation at 22,000g for 30 min. The pellet was
washed in the buffer A and solubilized in lysis buffer (Pierce). Crude membrane
fraction (supernatant) was collected by centrifugation at 22,000g for 20 min.
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CORRECTIONS & AMENDMENTS

CORRIGENDUM
doi:10.1038/nature11977

Corrigendum: Structure-based prediction of protein–protein
interactions on a genome-wide scale
Qiangfeng Cliff Zhang, Donald Petrey, Lei Deng, Li Qiang, Yu Shi, Chan Aye Thu, Brygida Bisikirska, Celine Lefebvre,
Domenico Accili, Tony Hunter, Tom Maniatis, Andrea Califano & Barry Honig

Nature 490, 556–560 (2012); doi:10.1038/nature11503

In this Letter, one of the points shown in Fig. 2 and Supplementary
Figs 8, 9 and Supplementary Table 4 reflects the presence of interac-
tions that had been erroneously deposited from a previous publication1

into the IntAct database. We have now used the MINT database to
retrieve these interactions, and Fig. 2 is corrected here (shown below as
Fig. 1). The error in IntAct was corrected on 9 November 2012 in con-
sultation with the original authors of the paper. We thank S. Michnick
for bringing this to our attention. We also thank M. Maletta for point-
ing out that Supplementary Fig. 10C was mislabelled and erroneously
indicated that NKX2-2 protein was not included in the experiment. See
Supplementary Information to the original paper for corrected ver-
sions of Supplementary Figs 8–10C and Supplementary Table 4. These
errors do not affect the results or conclusion of the paper, and have
been corrected in the HTML and PDF of the original paper.

1. Taeassov, K. et al. An in vivo map of the yeast protein interactome. Science 320,
1465–1470 (2008).
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