Apache Spark 101

Lance Co Ting Keh
Senior Software Engineer, Machine Learning @ Box
Outline

I. About me

II. Distributed Computing at a High Level

III. Disk versus Memory based Systems

IV. Spark Core
 I. Brief background
 II. Benchmarks and Comparisons
 III. What is an RDD
 IV. RDD Actions and Transformations
 V. Caching and Serialization
 VI. Anatomy of a Program
 VII. The Spark Family
Why Distributed Computing?

Divide and Conquer

Problem Single machine cannot complete the computation at hand

Solution Parallelize the job and distribute work among a network of machines
Issues Arise in Distributed Computing

View the world from the eyes of a single worker

- How do I **distribute** an algorithm?
- How do I **partition** my dataset?
- How do I maintain a **single consistent view** of a shared state?
- How do I recover from **machine failures**?
- How do I **allocate cluster resources**?
-
Finding majority element in a single machine

Think distributed

List(20, 18, 20, 18, 20)
Finding majority element in a distributed dataset

Think distributed

List(1, 18, 1, 18, 1)
List(2, 18, 2, 18, 2)
List(3, 18, 3, 18, 3)
List(4, 18, 4, 18, 4)
List(5, 18, 5, 18, 5)
Finding majority element in a distributed dataset

Think distributed

List(1, 18, 1, 18, 1)
List(2, 18, 2, 18, 2)
List(3, 18, 3, 18, 3)
List(4, 18, 4, 18, 4)
List(5, 18, 5, 18, 5)

18
Disk Based vs Memory Based Frameworks

Acyclic data flow

- **Disk Based Frameworks**
 - Persists intermediate results to disk
 - Data is reloaded from disk with every query
 - Easy failure recovery
 - Best for ETL like work-loads
 - Examples: Hadoop, Dryad

[Diagram of MapReduce process]

Image courtesy of Matei Zaharia, Introduction to Spark
Disk Based vs Memory Based Frameworks

Reuse working data set in memory

• Memory Based Frameworks
 – Circumvents heavy cost of I/O by keeping intermediate results in memory
 – Sensitive to availability of memory
 – Remembers operations applied to dataset
 – Best for iterative workloads
 – Examples: Spark, Flink

Image courtesy of Matei Zaharia, Introduction to Spark
The rest of the talk

I. Spark Core
 I. Brief background
 II. Benchmarks and Comparisons
 III. What is an RDD
 IV. RDD Actions and Transformations
 V. Spark Cluster
 VI. Anatomy of a Program
 VII. The Spark Family
Spark Background

Arose from an academic setting

- Amplab UC Berkley
- Project Lead: Dr. Matei Zaharia
- First paper published on RDD’s was in 2012
- Open sourced from day one, growing number of contributors
- Released its 1.0 version May 2014. Currently in 1.2.1
- *Databricks* company established to support Spark and all its related technologies. Matei currently sits as its CTO
- Amazon, Alibaba, Baidu, eBay, Groupon, Ooyala, OpenTable, Box, Shopify, TechBase, Yahoo!
Spark versus Scalding (Hadoop)

Clear win for iterative applications

Benchmarks Runtime

<table>
<thead>
<tr>
<th></th>
<th>Seconds (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generating Datapoints</td>
<td>29</td>
</tr>
<tr>
<td>Kmeans (per iteration)</td>
<td>9</td>
</tr>
<tr>
<td>Twitter</td>
<td>87</td>
</tr>
<tr>
<td>Wikipedia</td>
<td>48</td>
</tr>
<tr>
<td>Jaccard</td>
<td>246</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Spark</th>
<th>Scalding</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>87</td>
<td>980</td>
<td>980</td>
</tr>
<tr>
<td>48</td>
<td>590</td>
<td>590</td>
</tr>
</tbody>
</table>
Ad-hoc batch queries

SELECT pageURL, pageRank FROM rankings WHERE pageRank > X

Query 1A
32,888 results

Query 1B
3,331,851 results

Query 1C
89,974,976 results
Resilient Distributed Datasets (RDDs)

- Main object in Spark’s universe
- Think of it as representing the data at that stage in the operation
- Allows for coarse-grained transformations (e.g. map, group-by, join)
- Allows for efficient fault recovery using lineage
 - Log one operation to apply to many elements
 - Recompute lost partitions of dataset on failure
 - No cost if nothing fails
RDD Actions and Transformations

Transformations are realized when an action is called

• Transformations
 – Lazy operations applied on an RDD
 – Creates a new RDD from an existing RDD
 – Allows Spark to perform optimizations
 – e.g. map, filter, flatMap, union, intersection, distinct, reduceByKey, groupByKey

• Actions
 – Returns a value to the driver program after computation
 – e.g. reduce, collect, count, first, take, saveAsFile
RDD Representation

• Simple common interface:
 – Set of partitions
 – Preferred locations for each partition
 – List of parent RDDs
 – Function to compute a partition given parents
 – Optional partitioning info

• Allows capturing wide range of transformations

Slide courtesy of Matei Zaharia, Introduction to Spark
Spark Cluster

Driver

- Entry point of Spark application
- Main Spark application is ran here
- Results of “reduce” operations are aggregated here
Master

- Distributed coordination of Spark workers including:
 - Health checking workers
 - Reassignment of failed tasks
 - Entry point for job and cluster metrics
Spark Cluster

Worker

• Spawns executors to perform tasks on partitions of data
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
messages = errors.map(_.split(\'\t\')(2))
messages.persist()
```

```
messages.filter(_.contains("foo")).count
messages.filter(_.contains("bar")).count
...
```

Result: scaled to 1 TB data in 5-7 sec (vs 170 sec for on-disk data)

Slide courtesy of Matei Zaharia, Introduction to Spark
The Spark Family
Cheaper by the dozen

• Aside from its performance and API, the diverse tool set available in Spark is the reason for its wide adoption
 1. Spark Streaming
 2. Spark SQL
 3. MLlib
 4. GraphX
Lambda Architecture
Unified Framework