
First-Order Logic

George Konidaris	
gdk@cs.duke.edu

Spring 2016

mailto:gdk@cs.duke.edu

First-Order Logic
More sophisticated representation language.	
!
!
World can be described by:

objects

functions
Color(·)

relations

Adjacent(·, ·)
IsApple(·)

First-Order Logic
Objects:	

• A “thing in the world”	
• Apples	
• Red	
• The Internet	
• Team Edward	
• Reddit	

• A name that references something.	
• Cf. a noun.

MyApple271

T heInternet

Ennui
CompSci270

First-Order Logic
Functions:	
• Operator that maps object(s) to single object.	

• 	
• 	
• 	
• 	

ColorOf (á)
ObjectNextT o(á)
SocialSecurityNumber (á)
DateOfBirth (á)
Spouse(á)

ColorOf (MyApple271) = Red

First-Order Logic
Relations (also called predicates):	
!
Like a function, but returns True or False - holds or does not.	

• 	
• 	
• 	
• 	

!
These are like verbs or verb phrases.

IsApple(·)
ParentOf(·, ·)
BiggerT han(·, ·)
HasA(·, ·)

First-Order Logic
We can build up complex sentences using logical connectives,
as in propositional logic:	

• 	
• 	
• 	
• 	

!
!

Predicates can appear where a propositions appear in
propositional logic, but functions cannot.

Fruit(X) =) Sweet(X)
Food(X) =) (Savory(X) _ Sweet(X))
ParentOf(Bob,Alice) ^ ParentOf(Alice,Humphrey)
Fruit(X) =) Tasty(X) _ (IsTomato(X) ^ ¬Tasty(X))

Models for First-Order Logic
Recall from Propositional Logic!

A model is a formalization of a “world”:	
• Set the value of every variable in the KB to True or False.	
• 2n models possible for n propositions.	

!
!
!
!
!
!

Proposition Value

Cold False
Raining False
Cloudy False
Hot False

Proposition Value

Cold True
Raining False
Cloudy False
Hot False

Proposition Value

Cold True
Raining True
Cloudy True
Hot True

…

Models for First-Order Logic
The situation is much more complex for FOL.	
!
A model in FOL consists of:	

• A set of objects.	
• A set of functions + values for all inputs.!
• A set of predicates + values for all inputs.

Models for First-Order Logic
Consider:	
!

Objects Predicates Functions	
!
!
!
!
Example model:

Orange
Apple

IsRed(·)
HasV itaminC(·)

OppositeOf(·)

Predicate Argument Value
IsRed Orange False
IsRed Apple True

HasV itaminC Orange True
HasV itaminC Apple True

Function Argument Return

OppositeOf Orange Apple
Opposite Apple Orange

Knowledge Bases in FOL
A KB is now:	

• A set of objects.	
• A set of predicates.	
• A set of functions.	
• A set of sentences using the predicates, functions, and

objects, and asserted to be true.

Objects Predicates Functions	
!
!
!
!

Orange
Apple

IsRed(·)
HasV itaminC(·)

OppositeOf(·)

IsRed(Apple)

HasV itaminC (Orange)

Knowledge Bases in FOL
Listing everything is tedious …	

• Especially when general relationships hold.	
!

We would like a way to say more general things about the
world than explicitly listing truth values for each object.

Quantifiers
New weapon:	

• Quantifiers.
!

Quantifiers allow us to make generic statements about
properties that hold for the entire collection of objects in our
KB.	
!
Natural way to say things like:	

• All fish have fins.	
• All books have pages.	
• There is a textbook about AI.	

!

Key idea: variable + binding rule.

Existential Quantifiers
There exists object(s) such that a sentence holds.
!

! x, IsP resident (x)

“there exists”

temporary variable

sentence	
using variable

Existential Quantifiers
Examples:	
!

• 	
!

• 	
!

•

! x, P erson(x) " Name(x, George)

! x, Car (x) " ParkedIn (x, E 23)

9x,Course(x) ^ Prerequisite(x,CS270)

Universal Quantifiers
A sentence holds for all object(s).

“for every”
sentence	

using variable

temporary variable

8x,HasStudentNumber(x) =) Person(x)

Universal Quantifiers
Examples	
!

• 	
!

• 	
!

8x, Fruit(x) =) Tasty(x)

8x,Bird(x) =) Feathered(x)

8x,Book(x) ! HasAuthor(x)

Quantifiers
Difference in strength:	

• Universal quantifier is very strong.	
• So use weak sentence.	

!
!
!

• Existential quantifier is very weak.	
• So use strong sentence.

8x,Bird(x) =) Feathered(x)

! x, Car (x) " ParkedIn (x, E 23)

Compound Quantifiers

! x, " y, P erson(x) =# Name(x, y)

“every person has a name”

Common Pitfalls

8x,Bird(x) ^ Feathered(x)

Common Pitfalls

! x, Car (x) =" ParkedIn (x, E 23)

Examples
…

Inference in First-Order Logic
Ground term, or literal - an actual object:	
!
!

vs. a variable:	
!
!
If you have only ground terms, you can convert to a propositional
representation and proceed from there.

MyApple12

x

IsTasty(Apple) : IsTastyApple

Instantiation
Getting rid of variables: instantiate a variable to a literal.	
!
Universally quantified:	
!
!
!
!
!
!
!
!
For every object in the KB, just write out the rule with the
variables substituted.	

! x, F ruit (x) =" T asty(x) F ruit (Apple) =! T asty(Apple)

F ruit (Orange) =! T asty(Orange)

F ruit (MyCar) =! T asty(MyCar)

F ruit (T heSky) =! T asty(T heSky)

Instantiation
Existentially quantified:	

• 	 Invent a new name (Skolem constant)
!

!

!

!

!

!
• Name cannot be one you’ve already used.	
• Rule can then be discarded.

9x,Car(x) ^ ParkedIn(x,E23)

Car(C) ^ ParkedIn(C,E23)

PROLOG
PROgramming in LOGic (Colmerauer, 1970s)	

• General-purpose AI programming language	
• Based on First-Order Logic	
• Declarative	

!
• Use centered in Europe and Japan	
• Fifth-Generation Computer Project	

!
• Some parts of Watson (pattern matching over NLP)	
• Often used as component of a system.

