
CPS 590.4CPS 590.4

Computational problems, algorithms, runtime,
hardnesshardness

(a ridiculously brief introduction to theoretical computer science)

Vincent Conitzer

Set Cover (a computational problem)
• We are given:• We are given:

– A finite set S = {1, …, n}
– A collection of subsets of S: S1 S2 SA collection of subsets of S: S1, S2, …, Sm

• We are asked:
– Find a subset T of {1 m} such that U S = S– Find a subset T of {1, …, m} such that Uj in TSj= S
– Minimize |T|

• Decision variant of the problem:• Decision variant of the problem:
– we are additionally given a target size k, and
– asked whether a T of size at most k will suffice– asked whether a T of size at most k will suffice

• One instance of the set cover problem:
S = {1 6} S = {1 2 4} S = {3 4 5} S =S = {1, …, 6}, S1 = {1,2,4}, S2 = {3,4,5}, S3 =
{1,3,6}, S4 = {2,3,5}, S5 = {4,5,6}, S6 = {1,3}

Visualizing Set Cover
• S = {1 6} S = {1 2 4} S = {3 4 5} S =• S = {1, …, 6}, S1 = {1,2,4}, S2 = {3,4,5}, S3 =

{1,3,6}, S4 = {2,3,5}, S5 = {4,5,6}, S6 = {1,3}

32

1 41

6 56 5

Using glpsol to solve set cover
i tinstances

• How do we model set cover as an integer program?
• See examples

Algorithms and runtime
W• We saw:
– the runtime of glpsol on set cover instances increases

rapidly as the instances’ sizes increasep y
– if we drop the integrality constraint, can scale to larger

instances
Questions:• Questions:
– Using glpsol on our integer program formulation is but one

algorithm – maybe other algorithms are faster?g y g
• different formulation; different optimization package (e.g., CPLEX);

simply going through all the combinations one by one; …
– What is “fast enough”? g
– Do (mixed) integer programs always take more time to solve

than linear programs?
Do set cover instances fundamentally take a long time to– Do set cover instances fundamentally take a long time to
solve?

A simpler problem: sorting (see associated spreadsheet)

• Given a list of numbers, sort them
• (Really) dumb algorithm: Randomly perturb the

numbers. See if they happen to be ordered. If not,
randomly perturb the whole list again etcrandomly perturb the whole list again, etc.

• Reasonably smart algorithm: Find the smallest
number List it first Continue on to the next numbernumber. List it first. Continue on to the next number,
etc.

• Smart algorithm (MergeSort):
– It is easy to merge two lists of numbers, each of which is

already sorted, into a single sorted list
– So: divide the list into two equal parts sort each part with– So: divide the list into two equal parts, sort each part with

some method, then merge the two sorted lists into a single
sorted list

actually to sort each of the parts we can again use– … actually, to sort each of the parts, we can again use
MergeSort! (The algorithm “calls itself” as a subroutine.
This idea is called recursion.) Etc.

Polynomial time
• Let |x| be the size of problem instance x (e.g., the size

of the file in the .lp language)
• Let a be an algorithm for the problem• Let a be an algorithm for the problem
• Suppose that for any x, runtime(a,x) < cf(|x|) for some

constant c and function fconstant c and function f
Then we say algorithm a’s runtime is O(f(|x|))

• a is a polynomial-time algorithm if it is O(f(|x|)) for p y g ((| |))
some polynomial function f

• P is the class of all problems that have at least one
l i l i l i hpolynomial-time algorithm

• Many people consider an algorithm efficient if and
only if it is polynomial timeonly if it is polynomial-time

Two algorithms for a problem
runtime 2n22n run of

algorithm 1
run ofrun of

algorithm 2

Algorithm 1 is O(n2)
(l i l ti(a polynomial-time

algorithm)

Algorithm 2 is not O(nk)Algorithm 2 is not O(nk)
for any constant k

(not a polynomial-time
algorithm)algorithm)

The problem is in P

n = |x|

Linear programming and (mixed)
i t iinteger programming

• LP and (M)IP are also computational problems• LP and (M)IP are also computational problems
• LP is in P

Ironically the most commonly used LP algorithms– Ironically, the most commonly used LP algorithms
are not polynomial-time (but “usually” polynomial
time))

• (M)IP is not known to be in P
– Most people consider this unlikelyp p y

Reductions
• Sometimes you can reformulate problem A in

terms of problem B (i.e., reduce A to B)
– E.g., we have seen how to formulate several

problems as linear programs or integer programs
In this case problem A is at most as hard as• In this case problem A is at most as hard as
problem B

Since LP is in P all problems that we can formulate– Since LP is in P, all problems that we can formulate
using LP are in P

– Caveat: only true if the linear program itself can beCaveat: only true if the linear program itself can be
created in polynomial time!

NP (“nondeterministic polynomial time”)
• Recall: decision problems require a yes or no

answer
• NP: the class of all decision problems such that

if the answer is yes, there is a simple proof of
th tthat

• E.g., “does there exist a set cover of size k?”
• If yes, then just show which subsets to choose!

• Technically:
– The proof must have polynomial length
– The correctness of the proof must be verifiable in

polynomial time

P vs. NP
• Open problem: is it true that P=NP?
• The most important open problem in theoreticalThe most important open problem in theoretical

computer science (maybe in mathematics?)
• $1,000,000 Clay Mathematics Institute Prize, , y
• Most people believe P is not NP
• If P were equal to NP…

– Current cryptographic techniques can be broken in
polynomial time

– Computers may be able to solve many difficult mathematical– Computers may be able to solve many difficult mathematical
problems…

• … including, maybe, some other Clay Mathematics Institute Prizes!

NP-hardness
A bl i NP h d if th f ll i i t• A problem is NP-hard if the following is true:
– Suppose that it is in P
– Then P=NPThen P NP

• So, trying to find a polynomial-time algorithm for it is
like trying to prove P=NP

• Set cover is NP-hard
• Typical way to prove problem Q is NP-hard:

– Take a known NP-hard problem Q’
– Reduce it to your problem Q

• (in polynomial time)(in polynomial time)

• E.g., (M)IP is NP-hard, because we have already
reduced set cover to it
– (M)IP is more general than set cover, so it can’t be easier

• A problem is NP-complete if it is 1) in NP, and 2) NP-hard

Reductions:
To show problem Q is easy:To show problem Q is easy:

Q Problem known to bereduce
Q Problem known to be

easy (e.g., LP)

To show problem Q is (NP)hard:To show problem Q is (NP-)hard:

Q
Problem known to be

(NP)h d
reduce

Q(NP-)hard
(e.g., set cover, (M)IP)

ABSOLUTELY NOT A PROOF OF NP-HARDNESS:
reduce

Q MIP

Independent Set
• In the below graph, does there exist a subset of

vertices, of size 4, such that there is no edge between
members of the subset?members of the subset?

• General problem (decision variant): given a graph and
a number k, are there k vertices with no edges
between them?

• NP complete• NP-complete

Reducing independent set
to set coverto set cover

k 4
1 2

3

, k=44 5
6

7 89

• In set cover instance (decision variant),

7

()
– let S = {1,2,3,4,5,6,7,8,9} (set of edges),
– for each vertex let there be a subset with the vertex’s

adjacent edges: {1 4} {1 2 5} {2 3} {4 6 7} {3 6 8 9} {9}adjacent edges: {1,4}, {1,2,5}, {2,3}, {4,6,7}, {3,6,8,9}, {9},
{5,7,8}

– target size = #vertices - k = 7 - 4 = 3
• Claim: answer to both instances is the same (why??)
• So which of the two problems is harder?

Weighted bipartite matching
33

4

5

2
1

6

1

7

3

• Match each node on the left with one node on the
right (can only use each node once)
Mi i i t t l t (i ht th h d)• Minimize total cost (weights on the chosen edges)

Weighted bipartite matching…
• minimize cij xij
• subject to

f i Σ 1• for every i, Σj xij = 1
• for every j, Σi xij = 1

f i j ≥ 0• for every i, j, xij ≥ 0

• Theorem [Birkhoff von Neumann]: this linear program• Theorem [Birkhoff-von Neumann]: this linear program
always has an optimal solution consisting of just
integersg
– and typical LP solving algorithms will return such a solution

S i ht d bi tit t hi i i P• So weighted bipartite matching is in P

