CPS 590.4

Computational problems, algorithms, runtime, hardness
(a ridiculously brief introduction to theoretical computer science)

Vincent Conitzer

Set Cover (a computational problem)

- We are given:
- A finite set $S=\{1, \ldots, n\}$
- A collection of subsets of $S: S_{1}, S_{2}, \ldots, S_{m}$
- We are asked:
- Find a subset T of $\{1, \ldots, m\}$ such that $U_{j \text { in } T} S_{j}=S$
- Minimize |T|
- Decision variant of the problem:
- we are additionally given a target size k, and
- asked whether a T of size at most k will suffice
- One instance of the set cover problem:

$$
\begin{aligned}
& S=\{1, \ldots, 6\}, S_{1}=\{1,2,4\}, S_{2}=\{3,4,5\}, S_{3}= \\
& \{1,3,6\}, S_{4}=\{2,3,5\}, S_{5}=\{4,5,6\}, S_{6}=\{1,3\}
\end{aligned}
$$

Visualizing Set Cover

- $S=\{1, \ldots, 6\}, S_{1}=\{1,2,4\}, S_{2}=\{3,4,5\}, S_{3}=$ $\{1,3,6\}, S_{4}=\{2,3,5\}, S_{5}=\{4,5,6\}, S_{6}=\{1,3\}$

Using glpsol to solve set cover instances

- How do we model set cover as an integer program?
- See examples

Algorithms and runtime

- We saw:
- the runtime of glpsol on set cover instances increases rapidly as the instances' sizes increase
- if we drop the integrality constraint, can scale to larger instances
- Questions:
- Using glpsol on our integer program formulation is but one algorithm - maybe other algorithms are faster?
- different formulation; different optimization package (e.g., CPLEX); simply going through all the combinations one by one; ...
- What is "fast enough"?
- Do (mixed) integer programs always take more time to solve than linear programs?
- Do set cover instances fundamentally take a long time to solve?

A simpler problem: sorting (see associated spreadsheet)

- Given a list of numbers, sort them
- (Really) dumb algorithm: Randomly perturb the numbers. See if they happen to be ordered. If not, randomly perturb the whole list again, etc.
- Reasonably smart algorithm: Find the smallest number. List it first. Continue on to the next number, etc.
- Smart algorithm (MergeSort):
- It is easy to merge two lists of numbers, each of which is already sorted, into a single sorted list
- So: divide the list into two equal parts, sort each part with some method, then merge the two sorted lists into a single sorted list
- ... actually, to sort each of the parts, we can again use MergeSort! (The algorithm "calls itself" as a subroutine. This idea is called recursion.) Etc.

Polynomial time

- Let |x| be the size of problem instance x (e.g., the size of the file in the .lp language)
- Let a be an algorithm for the problem
- Suppose that for any x, runtime $(a, x)<c f(|x|)$ for some constant c and function f
Then we say algorithm a's runtime is $\mathrm{O}(\mathrm{f}(|\mathrm{x}|))$
- a is a polynomial-time algorithm if it is $\mathrm{O}(\mathrm{f}(|\mathrm{x}|))$ for some polynomial function f
- P is the class of all problems that have at least one polynomial-time algorithm
- Many people consider an algorithm efficient if and only if it is polynomial-time

Two algorithms for a problem

Linear programming and (mixed) integer programming

- LP and (M)IP are also computational problems
- LP is in P
- Ironically, the most commonly used LP algorithms are not polynomial-time (but "usually" polynomial time)
- (M)IP is not known to be in P
- Most people consider this unlikely

Reductions

- Sometimes you can reformulate problem A in terms of problem B (i.e., reduce A to B)
- E.g., we have seen how to formulate several problems as linear programs or integer programs
- In this case problem A is at most as hard as problem B
- Since LP is in P, all problems that we can formulate using LP are in P
- Caveat: only true if the linear program itself can be created in polynomial time!

NP ("nondeterministic polynomial time")

- Recall: decision problems require a yes or no answer
- NP: the class of all decision problems such that if the answer is yes, there is a simple proof of that
- E.g., "does there exist a set cover of size k?"
- If yes, then just show which subsets to choose!
- Technically:
- The proof must have polynomial length
- The correctness of the proof must be verifiable in polynomial time

P vs. NP

- Open problem: is it true that $\mathrm{P}=\mathrm{NP}$?
- The most important open problem in theoretical computer science (maybe in mathematics?)
- \$1,000,000 Clay Mathematics Institute Prize
- Most people believe P is not NP
- If P were equal to NP...
- Current cryptographic techniques can be broken in polynomial time
- Computers may be able to solve many difficult mathematical problems...
- ... including, maybe, some other Clay Mathematics Institute Prizes! ©

NP-hardness

- A problem is NP-hard if the following is true:
- Suppose that it is in P
- Then P=NP
- So, trying to find a polynomial-time algorithm for it is like trying to prove $\mathrm{P}=\mathrm{NP}$
- Set cover is NP-hard
- Typical way to prove problem Q is NP-hard:
- Take a known NP-hard problem Q'
- Reduce it to your problem Q
- (in polynomial time)
- E.g., (M)IP is NP-hard, because we have already reduced set cover to it
- (M)IP is more general than set cover, so it can't be easier
- A problem is NP-complete if it is 1) in NP, and 2) NP-hard

Reductions:

To show problem Q is easy:

To show problem Q is (NP-)hard:

ABSOLUTELY NOT A PROOF OF NP-HARDNESS:
reduce
$\mathrm{Q} \longrightarrow$ MIP

Independent Set

- In the below graph, does there exist a subset of vertices, of size 4, such that there is no edge between members of the subset?

- General problem (decision variant): given a graph and a number k, are there k vertices with no edges between them?
- NP-complete

Reducing independent set

to set cover

, k=4

- In set cover instance (decision variant),
- let $S=\{1,2,3,4,5,6,7,8,9\}$ (set of edges),
- for each vertex let there be a subset with the vertex's adjacent edges: $\{1,4\},\{1,2,5\},\{2,3\},\{4,6,7\},\{3,6,8,9\},\{9\}$, $\{5,7,8\}$
- target size = \#vertices - k=7-4 = 3
- Claim: answer to both instances is the same (why??)
- So which of the two problems is harder?

Weighted bipartite matching

- Match each node on the left with one node on the right (can only use each node once)
- Minimize total cost (weights on the chosen edges)

Weighted bipartite matching...

- minimize $\mathrm{c}_{\mathrm{ij}} \mathrm{x}_{\mathrm{ij}}$
- subject to
- for every $\mathrm{i}, \Sigma_{\mathrm{j}} \mathrm{x}_{\mathrm{ij}}=1$
- for every $\mathrm{j}, \Sigma_{\mathrm{i}} \mathrm{x}_{\mathrm{ij}}=1$
- for every $\mathrm{i}, \mathrm{j}, \mathrm{x}_{\mathrm{ij}} \geq 0$
- Theorem [Birkhoff-von Neumann]: this linear program always has an optimal solution consisting of just integers
- and typical LP solving algorithms will return such a solution
- So weighted bipartite matching is in P

