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A few different 1-item auction mechanisms
• English auction:English auction:

– Each bid must be higher than previous bid
– Last bidder wins, pays last bid

• Japanese auction:
– Price rises, bidders drop out when price is too high

L t bidd i t i f l t d t– Last bidder wins at price of last dropout 
• Dutch auction:

– Price drops until someone takes the item at that price– Price drops until someone takes the item at that price
• Sealed-bid auctions (direct-revelation mechanisms):

– Each bidder submits a bid in an envelopep
– Auctioneer opens the envelopes, highest bid wins

• First-price sealed-bid auction: winner pays own bid
• Second price sealed bid (or Vickrey) auction: winner pays second• Second-price sealed bid (or Vickrey) auction: winner pays second-

highest bid



Complementarity and substitutability
• How valuable one item is to a bidder may• How valuable one item is to a bidder may 

depend on whether the bidder possesses 
another itemanother item

• Items a and b are complementary if v({a b}) >• Items a and b are complementary if v({a, b}) > 
v({a}) + v({b})

• E g• E.g.

It d b b tit t if ({ b})• Items a and b are substitutes if v({a, b}) < 
v({a}) + v({b})
E• E.g.



Inefficiency of sequential auctions 
• Suppose your valuation function is v(     ) = pp y ( )

$200, v(     ) = $100, v(           ) = $500
• Now suppose that there are two (say, Vickrey) pp ( y, y)

auctions, the first one for      and the second 
one for

• What should you bid in the first auction (for     )?
• If you bid $200, you may lose to a bidder who y y y

bids $250, only to find out that you could have 
won       for $200

• If you bid anything higher, you may pay more 
than $200, only to find out that       sells for 
$1000$1000

• Sequential (and parallel) auctions are inefficient



Combinatorial auctions
Simultaneously for sale:

( $

Simultaneously for sale: ,        ,  
bid 1

v( ) = $500

v( ) = $700
bid 2

( ) $

bid 3

v( ) = $300

used in truckload transportation, industrial procurement, radio spectrum allocation, … 



The winner determination problem 
(WDP)(WDP)

• Choose a subset A (the accepted bids) of the• Choose a subset A (the accepted bids) of the 
bids B, 

• to maximize Σ v• to maximize Σb in Avb, 
• under the constraint that every item occurs at 

most once in Amost once in A
– This is assuming free disposal, i.e., not everything 

needs to be allocated



WDP examplep
• Items A, B, C, D, E

Bid• Bids:
• ({A, C, D}, 7)
• ({B, E}, 7)
• ({C}, 3) • What’s an({ } )
• ({A, B, C, E}, 9)
• ({D}, 4)

What s an 
optimal 
solution?({D}, 4)

• ({A, B, C}, 5)
• ({B D} 5)

• How can we 
prove it is • ({B, D}, 5) p
optimal?



Price-based argument for optimalityg p y
• Items A, B, C, D, E

Bid
• Suppose we create 

the following “prices”• Bids:
• ({A, C, D}, 7)

the following prices  
for the items:

• p(A) = 0 p(B) = 7• ({B, E}, 7)
• ({C}, 3)

• p(A) = 0, p(B) = 7, 
p(C) = 3, p(D) = 4, 
p(E) = 0({ } )

• ({A, B, C, E}, 9)
• ({D}, 4)

p(E)  0
• Every bid bids at 

most the sum of the({D}, 4)
• ({A, B, C}, 5)
• ({B D} 5)

most the sum of the 
prices of its items, so 
we can’t expect to • ({B, D}, 5) p
get more than 14.



Price-based argument does not 
always give matching upper boundalways give matching upper bound
• Items A, B, C

• Clearly can get at most 2
• If we want to set prices thatItems A, B, C

• Bids:
• ({A B} 2)

• If we want to set prices that 
sum to 2, there must exist two 
items whose prices sum to < 2• ({A, B}, 2)

• ({B, C}, 2)
({A C} 2)

items whose prices sum to  2
• But then there is a bid on those 

two items of value 2• ({A, C}, 2) two items of value 2
– (Can set prices that sum to 3, so 

that’s an upper bound)

Should not be surprising, since it’s an NP-
hard problem and we don’t expect shorthard problem and we don t expect short 
proofs for negative answers to NP-hard 
problems (we don’t expect NP = coNP)



An integer program formulation
l 1 if bid b i t d 0 if it i t• xb equals 1 if bid b is accepted, 0 if it is not

 maximize Σb vbxb
 subject to subject to
 for each item j, Σb: j in b xb ≤ 1

• If each xb can take any value in [0 1] we say thatIf each xb can take any value in [0, 1], we say that 
bids can be partially accepted

• In this case, this is a linear program that can be p g
solved in polynomial time

• This requires that
– each item can be divided into fractions
– if a bidder gets a fraction f of each of the items in his bundle, 

then this is worth the same fraction f of his value vb for the b 
bundle



Price-based argument does always 
work for partially acceptable bidswork for partially acceptable bids

• Items A, B, C • Now can get 3, by 
• Bids:
• ({A, B}, 2)

g , y
accepting half of 
each bid({ , }, )

• ({B, C}, 2)
• ({A C} 2)

• Put a price of 1 on 
each item({A, C}, 2)

General proof that with partially y
acceptable bids, prices always 
exist to give a matching upper 
b d i b d libound is based on linear 
programming duality



Weighted independent setWeighted independent set
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• Choose subset of the vertices with maximum total 
weight,

• Constraint: no two vertices can have an edge 
between them

• NP-hard (generalizes regular independent set)



The winner determination problem as a 
weighted independent set problemweighted independent set problem

• Each bid is a vertex
• Draw an edge between two vertices if they share an item• Draw an edge between two vertices if they share an item

v( ) = $700
bid 2

bid 1
v( ) = $300

bid 3

v( ) = $500

• Optimal allocation = maximum weight independent setOptimal allocation  maximum weight independent set
• Can model any weighted independent set instance as a CA 

winner determination problem (1 item per edge (or clique))
W i ht d i d d t t i NP h d t l• Weighted independent set is NP-hard, even to solve 
approximately [Håstad 96] - hence, so is WDP
– [Sandholm 02] noted that this inapproximability applies to the WDP



Dynamic programming approachDynamic programming approach 
to WDP [Rothkopf et al. 98]

• For every subset S of I compute w(S) = the• For every subset S of I, compute w(S) = the 
maximum total value that can be obtained 
when allocating only items in Swhen allocating only items in S

• Then, w(S) = max {maxi vi(S), maxS’: S’ is a subset of 
S and there exists a bid on S’ w(S’) + w(S \ S’)}S, and there exists a bid on S w(S )  w(S \ S )}

• Requires exponential time



Bids on connected sets of items in a tree
• Suppose items are organized in a tree

item B item E

item Fitem A item C

it D

item F

item G
item D

item H
• Suppose each bid is on a connected set of itemspp

– E.g. {A, B, C, G}, but not {A, B, G}
• Then the WDP can be solved in polynomial time (using 

dynamic programming) [Sandholm & Suri 03]dynamic programming) [Sandholm & Suri 03]

• Tree does not need to be given: can be constructed from the 
bids in polynomial time if it exists [Conitzer, Derryberry, Sandholm 04]

M ll WDP l b l d i l i l ti f• More generally, WDP can also be solved in polynomial time for 
graphs of bounded treewidth [Conitzer, Derryberry, Sandholm 04]

– Even further generalization given by [Gottlob, Greco 07]



Maximum weighted matching
( il bi i h )(not necessarily on bipartite graphs)

1 21 3

4 3
5

2 45

• Choose subset of the edges with maximum total 
weight,
C t i t t d h t• Constraint: no two edges can share a vertex

• Still solvable in polynomial time• Still solvable in polynomial time



Bids with few items [Rothkopf et al. 98]
• If each bid is on a bundle of at most two items• If each bid is on a bundle of at most two items, 
• then the winner determination problem can be solved 

in polynomial time as a maximum weighted matchingin polynomial time as a maximum weighted matching
problem 
– 3-item example:

Value of

item A item B B’s dummy

Value of 
highest bid 

on {B}
Value of highest 

bid on {A, B}

Value of

item CA’ d C’ d

Value of highest 
bid on {A} Value of 

highest bid 
on {C}Value of

Value of 
highest bid 
on {B, C}

item CA’s dummy C’s dummy
{ }Value of 

highest bid 
on {A, C}

If h bid i b dl f th it th th• If each bid is on a bundle of three items, then the 
winner determination problem is NP-hard again



Variants [Sandholm et al. 2002]: 
combinatorial reverse auctioncombinatorial reverse auction

• In a combinatorial reverse auction (CRA)In a combinatorial reverse auction (CRA), 
the auctioneer seeks to buy a set of 
items and bidders have values for theitems, and bidders have values for the 
different bundles that they may sell the 
auctioneerauctioneer
 minimize Σb vbxb

bj subject to
 for each item j, Σb: j in b xb ≥ 1



WDP example (as CRA)p ( )
• Items A, B, C, D, E

Bid• Bids:
• ({A, C, D}, 7)
• ({B, E}, 7)
• ({C}, 3)({ } )
• ({A, B, C, E}, 9)
• ({D}, 4)({D}, 4)
• ({A, B, C}, 5)
• ({B D} 5)• ({B, D}, 5)



Variants: 
multi unit CAs/CRAsmulti-unit CAs/CRAs

• Multi-unit variants of CAs and CRAs: multiple 
it f th it f l /t bunits of the same item are for sale/to be 

bought, bidders can bid for multiple units
L t b b f it f it j i bid b• Let qbj be number of units of item j in bid b, qj 
total number of units of j available/demanded 

i i Σ maximize Σb vbxb
 subject to
 for each item j, Σb qbjxb ≤ qj

 minimize Σb vbxb
 subject to
 for each item j, Σb qbjxb ≥ qj



Multi-unit WDP example 
(as CA/CRA)(as CA/CRA)

• Items: 3A, 2B, 4C, 1D, 3E, , , ,
• Bids:
• ({1A 1C 1D} 7)({1A, 1C, 1D}, 7)
• ({2B, 1E}, 7)
• ({2C} 3)• ({2C}, 3)
• ({2A, 1B, 2C, 2E}, 9)

({2D} 4)• ({2D}, 4)
• ({3A, 1B, 2C}, 5)
• ({2B, 2D}, 5)



Variants: (multi-unit) 
bi t i l hcombinatorial exchanges

• Combinatorial exchange (CE): bidders can• Combinatorial exchange (CE): bidders can 
simultaneously be buyers and sellers

Example bid: “If I receive 3 units of A and 5 units of– Example bid: If I receive 3 units of A and -5 units of 
B (i.e., I have to give up 5 units of B), that is worth 
$100 to me.”

 maximize Σb vbxb
 subject tosubject to
 for each item j, Σb qb,jxb ≤ 0



CE WDP examplep

• Bids:
• ({-1A, -1C, -1D}, -7)
• ({2B 1E} 7)({2B, 1E}, 7)
• ({2C}, 3)
• ({ 2A 1B 2C 2E} 9)• ({-2A, 1B, 2C, -2E}, 9)
• ({-2D}, -4)

({3A 1B 2C} 5)• ({3A, -1B, -2C}, 5)
• ({-2B, 2D}, 0)



Variants: no free disposalVariants: no free disposal

• Change all inequalities to equalities



(back to 1-unit CAs) Expressing valuation 
f nctions sing b ndle bidsfunctions using bundle bids

• A bidder is single-minded if she only wants 
to win one particular bundle
– Usually not the case

• But: one bidder may submit multiple 
bundle bids

• Consider again valuation function v(     ) = 
$200, v(     ) = $100, v(           ) = $500

• What bundle bids should one place?
• What about: v(     ) = $300, v(     ) = $200, 

v(           ) = $400?



Alternative approach: 
report entire valuation functionreport entire valuation function

• I.e., every bidder i reports vi(S) for every subset , y p i( ) y
S of I (the items)

• Winner determination problem:p
• Allocate a subset Si of I to each bidder i to 

maximize Σivi(Si) (under the constraint that for i i( i) (
i≠j, Si ∩ Sj = Ø)
– This is assuming free disposal, i.e., not everything 

needs to be allocated



Exponentially many bundles
• In general in a combinatorial auction with set of• In general, in a combinatorial auction with set of 

items I (|I| = m) for sale, a bidder could have a 
different valuation for every subset S of Id e e t a uat o o e e y subset S o
– Implicit assumption: no externalities (bidder does 

not care what the other bidders win)
• Must a bidder communicate 2m values?

– Impractical
– Also difficult for the bidder to evaluate every bundle

• Could require vi(Ø) = 0q i( )
– Does not help much

• Could require: if S is a superset of S’, v(S) ≥ q p , ( )
v(S’) (free disposal)
– Does not help in terms of number of values



Bidding languages
Biddi l l f i l ti• Bidding language = a language for expressing valuation 
functions

• A good bidding language allows bidders to concisely express 
natural valuation functions

• Example: the OR bidding language [Rothkopf et al. 98, 
DeMartini et al. 99]e a t et a 99]

• Bundle-value pairs are ORed together, auctioneer may accept 
any number of these pairs (assuming no overlap in items)
E g ({a} 3) OR ({b c} 4) OR ({c d} 4) implies• E.g. ({a}, 3) OR ({b, c}, 4) OR ({c, d}, 4) implies
– A value of 3 for {a}
– A value of 4 for {b, c, d}
– A value of 7 for {a, b, c}

• Can we express the valuation function v({a, b}) = v({a}) = v({b}) 
= 1 using the OR bidding language? 1 using the OR bidding language?

• OR language is good for expressing complementarity, bad for 
expressing substitutability



XORs
• If we use XOR instead of OR, that means that only one of the 

bundle value pairs can be acceptedbundle-value pairs can be accepted
• Can express any valuation function (simply XOR together all 

bundles)
• E.g. ({a}, 3) XOR ({b, c}, 4) XOR ({c, d}, 4) implies

– A value of 3 for {a}
– A value of 4 for {b, c, d}{ , , }
– A value of 4 for {a, b, c}

• Sometimes not very concise
• E g suppose that for any S v(S) = Σ v({s})• E.g. suppose that for any S, v(S) = Σs in Sv({s})

– How can this be expressed in the OR language?
– What about the XOR language?

C l bi OR d XOR b fi f b h• Can also combine ORs and XORs to get benefits of both [Nisan 
00, Sandholm 02]

• E.g. (({a}, 3) XOR ({b, c}, 4)) OR ({c, d}, 4) implies
– A value of 4 for {a, b, c}
– A value of 4 for {b, c, d}
– A value of 7 for {a, c, d}



WDP and bidding languages
• Single-minded bidders bid on only one bundle

– Valuation is v for any subset including that bundle, 0 
otherwiseotherwise

• If we can solve the WDP for single-minded bidders, 
we can also solve it for the OR language
– Simply pretend that each bundle-value pair comes from a 

different bidder
• We can even use the same algorithm when XORs are• We can even use the same algorithm when XORs are 

added, using the following trick:
– For bundle-value pairs that are XORed together, add a p g

dummy item to them [Fujishima et al 99, Nisan 00]

– E.g. ({a}, 3) XOR ({b, c}, 4) becomes ({a, dummy1}, 3) OR 
({b c dummy1} 4)({b, c, dummy1}, 4)

• So, we can focus on single-minded bids


