# CPS 590.4 Extensive-form games 

Vincent Conitzer<br>conitzer@cs.duke.edu

## Extensive-form games with perfect information



Leaves of the tree show player 1's utility first, then
player 2's utility

- Players do not move simultaneously
- When moving, each player is aware of all the previous moves (perfect information)
- A (pure) strategy for player $i$ is a mapping from player i's nodes to actions


## Backward induction

- When we know what



## A limitation of backward induction

- If there are ties, then
 how they are broken affects what happens higher up in the tree
- Multiple equilibria...


## Conversion from extensive to normal form



|  | LL | LR | RL | RR |
| :---: | :---: | :---: | :---: | :---: |
| L | 3,2 | 3,2 | 2,3 | 2,3 |
| R | 4,1 | 0,1 | 4,1 | 0,1 |
|  |  |  |  |  |

- Nash equilibria of this normal-form game include ( $R, L L$ ), ( $R, R L$ ), (L, RR) + infinitely many mixed-strategy equilibria
- In general, normal form can have exponentially many strategies


## Converting the first game to normal form



## Subgame perfect equilibrium

- Each node in a (perfect-information) game tree, together with the remainder of the game after that node is reached, is called a subgame
- A strategy profile is a subgame perfect equilibrium if it is an equilibrium for every subgame


2, 4
5, 3
3, 2

- (RR, LL) and (LR, LR) are not subgame perfect equilibria because ( ${ }^{*} R$, ${ }^{* *}$ ) is not an equilibrium
- (LL, LR) is not subgame perfect because (*L, *R) is not an equilibrium
1, 0
0,1
$\bullet * R$ is not a credible threat


## Imperfect information

- Dotted lines indicate that a player cannot distinguish between two (or more) states
- A set of states that are connected by dotted lines is called an information set
- Reflected in the normal-form representation

- Any normal-form game can be transformed into an imperfect-information extensive-form game this way


## A poker-like game



## Subgame perfection and imperfect information

- How should we extend the notion of subgame perfection to games of imperfect information?

- We cannot expect Player 2 to play Right after Player 1 plays Left, and Left after Player 1 plays Right, because of the information set
- Let us say that a subtree is a subgame only if there are no information sets that connect the subtree to parts outside the subtree


## Subgame perfection and imperfect information...



- One of the Nash equilibria is: ( $R, R R$ )
- Also subgame perfect (the only subgames are the whole game, and the subgame after Player 1 moves Right)
- But it is not reasonable to believe that Player 2 will move Right after Player 1 moves Left/Middle (not a credible threat)
- There exist more sophisticated refinements of Nash equilibrium that rule out such behavior


## Computing equilibria in the extensive form

- Can just use normal-form representation
- Misses issues of subgame perfection, etc.
- Another problem: there are exponentially many pure strategies, so normal form is exponentially larger
- Even given polynomial-time algorithms for normal form, time would still be exponential in the size of the extensive form
- There are other techniques that reason directly over the extensive form and scale much better
- E.g., using the sequence form of the game


## Commitment

- Consider the following (normal-form) game:

| 2,1 | 4,0 |
| :--- | :--- |
| 1,0 | 3,1 |

- How should this game be played?
- Now suppose the game is played as follows:
- Player 1 commits to playing one of the rows,
- Player 2 observes the commitment and then chooses a column
- What is the optimal strategy for player 1 ?
- What if 1 can commit to a mixed strategy?


## Commitment as an extensive-form game

- For the case of committing to a pure strategy:



## Commitment as an extensive-form game

- For the case of committing to a mixed strategy:

- Infinite-size game; computationally impractical to reason with the extensive form here


## Solving for the optimal mixed strategy to commit to <br> [Conitzer \& Sandholm 2006, von Stengel \& Zamir 2010]

- For every column t separately, we will solve separately for the best mixed row strategy (defined by $\mathbf{p}_{\mathbf{s}}$ ) that induces player 2 to play t
- maximize $\Sigma_{\mathrm{s}} \mathbf{p}_{\mathrm{s}} \mathrm{u}_{1}(\mathrm{~s}, \mathrm{t})$
- subject to for any t', $\Sigma_{s} \mathbf{p}_{\mathrm{s}} \mathrm{u}_{2}(\mathrm{~s}, \mathrm{t}) \geq \Sigma_{\mathrm{s}} \mathbf{p}_{\mathrm{s}} \mathrm{u}_{2}\left(\mathrm{~s}, \mathrm{t}^{\prime}\right)$ $\Sigma_{s} p_{s}=1$
- (May be infeasible, e.g., if $t$ is strictly dominated)
- Pick the $t$ that is best for player 1


## Visualization

|  | L | C | R |
| :--- | :---: | :---: | :---: |
| U | 0,1 | 1,0 | 0,0 |
| M | 4,0 | 0,1 | 0,0 |
| D | 0,0 | 1,0 | 1,1 |

