CPS 590.4

Brief introduction to linear
 and mixed integer programming

Vincent Conitzer

Linear programs: example

- We make reproductions of two paintings

$$
\text { maximize } 3 x+2 y
$$

$$
\begin{gathered}
\text { subject to } \\
4 x+2 y \leq 16
\end{gathered}
$$

- Painting 1 sells for $\$ 30$, painting 2

$$
x+2 y \leq 8
$$ sells for $\$ 20$

$$
x+y \leq 5
$$

- Painting 1 requires 4 units of blue, 1 green, 1 red

$$
x \geq 0
$$

- Painting 2 requires 2 blue, 2 green, 1
$y \geq 0$ red
- We have 16 units blue, 8 green, 5 red

Solving the linear program graphically

maximize $3 x+2 y$
subject to
$4 x+2 y \leq 16$
$x+2 y \leq 8$
$x+y \leq 5$
$x \geq 0$
$y \geq 0$

Modified LP

maximize $3 x+2 y$
subject to
$4 x+2 y \leq 15$
$x+2 y \leq 8$
$x+y \leq 5$
$x \geq 0$
$y \geq 0$

Optimal solution: $x=2.5$,

$$
y=2.5
$$

Solution value $=7.5+5=$ 12.5

Half paintings?

Integer (linear) program

 maximize $3 x+2 y$$$
\begin{gathered}
\text { subject to } \\
\begin{array}{c}
4 x+2 y \leq 15 \\
x+2 y \leq 8 \\
x+y \leq 5
\end{array}
\end{gathered}
$$

$x \geq 0$, integer ${ }^{2}$
$y \geq 0$, integer

Mixed integer (linear) program

 maximize $3 x+2 y$ subject to $4 x+2 y \leq 15$$$
x+2 y \leq 8
$$

$$
x+y \leq 5
$$

$$
x \geq 0
$$

$y \geq 0$, integer

Solving linear/integer programs

- Linear programs can be solved efficiently
- Simplex, ellipsoid, interior point methods...
- (Mixed) integer programs are NP-hard to solve
- Quite easy to model many standard NP-complete problems as integer programs (try it!)
- Search type algorithms such as branch and bound
- Standard packages for solving these
- GNU Linear Programming Kit, CPLEX, ...
- LP relaxation of (M)IP: remove integrality constraints
- Gives upper bound on MIP (~admissible heuristic)

Exercise in modeling: knapsack-type problem

- We arrive in a room full of precious objects
- Can carry only 30 kg out of the room
- Can carry only 20 liters out of the room
- Want to maximize our total value
- Unit of object A: 16kg, 3 liters, sells for $\$ 11$
- There are 3 units available
- Unit of object B: 4kg, 4 liters, sells for $\$ 4$
- There are 4 units available
- Unit of object C: 6kg, 3 liters, sells for $\$ 9$ - Only 1 unit available
-What should we take?

Exercise in modeling: cell phones (set cover)

- We want to have a working phone in every continent (besides Antarctica)
- ... but we want to have as few phones as possible
- Phone A works in NA, SA, Af
- Phone B works in E, Af, As
- Phone C works in NA, Au, E
- Phone D works in SA, As, E
- Phone E works in Af, As, Au
- Phone F works in NA, E

Exercise in modeling: hot-dog stands

- We have two hot-dog stands to be placed in somewhere along the beach
- We know where the people that like hot dogs are, how far they are willing to walk
- Where do we put our stands to maximize \#hot dogs sold? (price is fixed)

location: 1	location: 4	location: 7	location: 9	location: 15
\#customers: 2	\#customers: 1	\#customers: 3	\#customers: 4	\#customers: 3
willing to walk: 4	willing to walk: 2	willing to walk: 3	willing to walk: 3	willing to walk: 2

