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Repeated games
• In a (typical) repeated game, 

– players play a normal-form game (aka. the stage game), 
– then they see what happened (and get the utilities),
– then they play again,

etc– etc.
• Can be repeated finitely or infinitely many times
• Really an extensive form gameReally, an extensive form game

– Would like to find subgame-perfect equilibria
• One subgame-perfect equilibrium: keep repeating g p q p p g

some Nash equilibrium of the stage game
• But are there other equilibria?



Finitely repeated Prisoner’s Dilemma
• Two players play the Prisoner’s Dilemma k times

cooperate defect

2, 2 0, 3
3, 0 1, 1

cooperate

defect , ,

• In the last round, it is dominant to defect
H i h d l d h i• Hence, in the second-to-last round, there is no way to 
influence what will happen

• So it is optimal to defect in this round as well• So, it is optimal to defect in this round as well
• Etc.
• So the only equilibrium is to always defect• So the only equilibrium is to always defect



Modified Prisoner’s Dilemma
S th f ll i i l d t i• Suppose the following game is played twice

5 5 0 6 0 6
cooperate defect1

t

defect2

5, 5 0, 6 0, 6
6, 0 4, 4 1, 1

cooperate

defect1

6, 0 1, 1 2, 2defect2

• Consider the following strategy:
– In the first round, cooperate;

In the second round if someone defected in the first round– In the second round, if someone defected in the first round, 
play defect2; otherwise, play defect1

• If both players play this, is that a subgame perfect p y p y , g p
equilibrium?



Another modified Prisoner’s Dilemma
S th f ll i i l d t i• Suppose the following game is played twice

5 5 0 6 1 0
cooperate defect

t

crazy

5, 5 0, 6 1, 0
6, 0 4, 4 1, 0

cooperate

defect

0, 1 0, 1 0, 0crazy

• What are the subgame perfect equilibria?
• Consider the following strategy:

– In the first round, cooperate;
– In the second round, if someone played defect or crazy in 

the first round, play crazy; otherwise, play defect, p y y; , p y
• Is this a Nash equilibrium (not subgame perfect)?



Infinitely repeated games
• First problem: are we just going to add up the utilities 

over infinitely many rounds?
– Everyone gets infinity!

• (Limit of) average payoff: limn→∞Σ1≤t≤nu(t)/n
Limit may not exist– Limit may not exist…

• Discounted payoff: Σtδtu(t) for some δ < 1



Infinitely repeated Prisoner’s Dilemma
cooperate defect

2, 2 0, 3
3 0 1 1

cooperate defect

cooperate

• Tit-for-tat strategy:

3, 0 1, 1defect

– Cooperate the first round,
– In every later round, do the same thing as the other player did in the 

previous round
• Is both players playing this a Nash/subgame-perfect 

equilibrium?  Does it depend on δ?
• Trigger strategy:Trigger strategy:

– Cooperate as long as everyone cooperates
– Once a player defects, defect forever

• Is both players playing this a subgame perfect equilibrium?• Is both players playing this a subgame-perfect equilibrium?
• What about one player playing tit-for-tat and the other playing 

trigger?



Folk theorem(s)
C h h t i th ilib i f i fi it l• Can we somehow characterize the equilibria of infinitely 
repeated games?
– Subgame perfect or not?g
– Averaged utilities or discounted?

• Easiest case: averaged utilities, no subgame perfection
W ill h t i h t ( d) tiliti (• We will characterize what (averaged) utilities (u1, u2, …, 
un) the agents can get in equilibrium

• The utilities must be feasible: there must be outcomes ofThe utilities must be feasible: there must be outcomes of 
the game such that the agents, on average, get these 
utilities
Th t l b f bl d i ti h ld l d t• They must also be enforceable: deviation should lead to 
punishment that outweighs the benefits of deviation

• Folk theorem: a utility vector can be realized by some y y
Nash equilibrium if and only if it is both feasible and 
enforceable



Feasibility
2, 2 0, 3
3, 0 1, 1

• The utility vector (2, 2) is feasible because it is one of 
the outcomes of the game

3, 0 1, 1

the outcomes of the game
• The utility vector (1, 2.5) is also feasible, because the 

agents could alternate between (2, 2) and (0, 3)g ( , ) ( , )
• What about (.5, 2.75)?
• What about (3, 0.1)?
• In general, convex combinations of the outcomes of 

the game are feasible
i bi ti f th if– p1a1 + p2a2 + … + pnan is a convex combination of the ai if 

the pi sum to 1 and are nonnegative



Enforceability
2, 2 0, 3
3 0 1 1

• A utility for an agent is not enforceable if the agent 
t h lf hi h tilit

3, 0 1, 1

can guarantee herself a higher utility
• E.g. a utility of .5 for player 1 is not enforceable, 

because she can guarantee herself a utility of 1 bybecause she can guarantee herself a utility of 1 by 
defecting

• A utility of 1.2 for player 1 is enforceable, because y p y ,
player 2 can guarantee player 1 a utility of at most 1 
by defecting
Wh t i th l ti hi t i i t t i &• What is the relationship to minimax strategies & 
values?



Computing a Nash equilibrium in a 2-
player repeated game using folk theoremplayer repeated game using folk theorem

• Average payoff, no subgame perfection
• Can be done in polynomial time:

– Compute minimum enforceable utility for each agent
• I e compute maxmin values & strategies• I.e., compute maxmin values & strategies

– Find a feasible point where both players receive at least 
this utility

E b th l l i th i i t t i• E.g., both players playing their maxmin strategies
– Players play feasible point (by rotating through the 

outcomes), unless the other deviates, in which case they 
punish the other player by playing minmax strategy forever

• Minmax strategy easy to compute

• A more complicated (and earlier) algorithm by LittmanA more complicated (and earlier) algorithm by Littman 
& Stone [04] computes a “nicer” and subgame-perfect 
equilibrium



Example Markov Decision Process (MDP)
M hi b i f th t t d• Machine can be in one of three states: good, 
deteriorating, broken
C t k t ti i t i i• Can take two actions: maintain, ignore



Stochastic games
A t h ti h lti l t t th t it b i• A stochastic game has multiple states that it can be in

• Each state corresponds to a normal-form game
• After a round, the game randomly transitions to another state, g y
• Transition probabilities depend on state and actions taken
• Typically utilities are discounted over time

1, 1 1, 0
0, 1 0, 0.5

.2

2, 2 0, 3
3 0 1 1

, ,

1 0 0 1

.4

.33, 0 1, 1 1, 0 0, 1
0, 1 1, 0.6

• 1-state stochastic game = (infinitely) repeated game
• 1-agent stochastic game = Markov Decision Process (MDP)



Stationary strategies
• A stationary strategy specifies a mixed strategy for 

each state
St t d t d d hi t– Strategy does not depend on history

– E.g., in a repeated game, stationary strategy = always 
playing the same mixed strategy

• An equilibrium in stationary strategies always exists 
[Fink 64]
E h l ill h l f b i i h t t• Each player will have a value for being in each state



Shapley’s [1953] algorithm for 2-player 
zero sum stochastic games ( l it ti )zero-sum stochastic games (~value iteration)

• Each state s is arbitrarily given a value V(s)
– Player 1’s utility for being in state sy y g

• Now, for each state, compute a normal-form game that takes 
these (discounted) values into account

-3 + δ(.7*2 + .3*5) 

* -3, 3
* *

* *
* * * -3 + 2.9δ, 

3 - 2 9δ

V(s2) = 2.7
3 δ( 3 5)

= -3 + 2.9δ

* *
* *
* *

3 2.9δ

* *V(s1) = -4 V(s3) = 5
.3

s1’s modified game

• Solve for the value of the modified game (using LP)
• Make this the new value of s1
• Do this for all states repeat until convergence• Do this for all states, repeat until convergence
• Similarly, analogs of policy iteration [Pollatschek & Avi-Itzhak] and 

Q-Learning [Littman 94, Hu & Wellman 98] exist 


